
An empirical study of task bundling for sequential
stochastic tasks in multi-robot task allocation

Changjoo Nam and Dylan A. Shell∗

June 30, 2016

Abstract

This paper studies multi-robot task allocation in a setting where tasks are
revealed sequentially and where it is possible to execute bundles of tasks.
Particularly, we are interested in tasks that have synergies so that the greater
the number of tasks executed together, the larger the potential performance
gain. We consider tasks that are fed to robots for an infinite or indefinite
time horizon. Robots may bundle multiple tasks to minimize some system
cost (e.g., fuel), but doing so incurs an additional waiting time for bundling
tasks. If the robots reduce their bundle size to minimize waiting time, task
executions fail to make the most of possible synergies. Thus the system
cost may increases, and the queue of waiting tasks may even overflow if
task completions too slow. This paper is an analysis of bundling, giving an
understanding of the important bundle size parameter. Based on qualitative
properties of any multi-robot system that bundles sequential stochastic tasks,
we propose multiple simple bundling policies. Experiments show how these
polices perform in the multi-robot routing domain, showing that they are
efficient compared to a baseline system where robots do not bundle tasks
but iterate instantaneous assignments and executions of tasks.

1 Introduction
Multi-robot task allocation (MRTA) considers optimizing collective perfor-

mance of a team of robots that execute a set of tasks. We consider a setting where
∗Both authors are with the Department of Computer Science and Engineering at Texas A&M

University, College Station, Texas, USA. cjnam@cse.tamu.edu

each robot performs one task at a time and each task requires only one robot to be
performed, which falls under the single-task robot and the single-robot task cate-
gory in the classic taxonomic description of such problems [1]. In the canonical
formulation, the sets of robots and tasks are fixed, and a decision-maker (e.g., a
central computation unit) has full access to all information about the tasks. Prac-
tically, it may be impossible to know the complete set of tasks beforehand, as
tasks might be revealed sequentially through observations or upon arrivals. Such
online tasks are seen in many applications (e.g., dial-a-ride, material handling for
online orders, demining). Compared to the case where the task set is known a pri-
ori, relatively little MRTA work examines online instances in a way that involves
reasoning about the arrival of yet to be revealed tasks [2].

In this paper, we study online tasks that are revealed sequentially and consider
an infinite time horizon, with a focus on tasks with positive synergies. Serving
tasks on an infinite time horizon needs a different performance metric other than
the sum-of-cost which is conventionally used in MRTA. We consider two objec-
tives which are the average system cost (e.g., fuel) per task and the average times-
pan of a task.1 If multiple synergistic tasks are bundled together, then the total
system cost of executing them is smaller than executing the tasks each indepen-
dently. An obvious way to deal with these sorts of tasks is aggregating a set and
then compute an allocation with the complete information for those tasks. Waiting
for tasks to arrive in order to form a sufficiently large aggregation requires time
which increases the timespan per task. This trade-off raises the question, how
many tasks should the robots bundle over and above the standard question of how
should the tasks be allocated among robots.

This paper explores the foundations of multi-robot task allocation for tasks
which arrive online, sequentially, and are synergistic in nature. We begin with a
qualitative study with the basic setting where a task is revealed deterministically
(e.g, within some fixed interval), where cost of the task being serviced is a func-
tion of its location, and the location of the task is independently and identically
drawn from a known probability distribution. Later, we extend our scope of study
to consider probabilistic task arrivals (a Poisson process) and non-i.i.d. task dis-
tributions. The set of tasks need not necessarily be bounded, but the set of robots
is assumed fixed. Tasks arrive concurrently with execution of tasks, so tasks accu-
mulate while robots are execute previous bundles. Fig. 1 depicts one iteration of a
routing example, showing the marked effect of bundles with different numbers of
tasks. We explore the basic case where robots work independently without coor-

1In the domains where tasks are navigation, the cost and the timespan are equivalent to the
distance traveled and the arrival time per task, respectively.

(a) The robot performs the
tasks as soon as they are re-
vealed.

(b) The robot waits for four
tasks and performs them as a
bundle.

Figure 1: A simple example: navigation tasks are revealed sequentially from t1 to t4. The robot
performs tasks and loiters until a new task is introduced. In (a), the robot begins performing tasks
right after they arrive. In (b), the robot waits until four tasks have been revealed, then finds a
cheaper tour than (a).

dination and tasks arrive deterministically with an i.i.d. spatial distribution. Next,
using information that describes stochastic tasks, we model the objective values
analytically as functions of bundle size. These models yield an optimal bundle
size for each objective. However, using the predicted (constant) bundle size be-
comes suboptimal once the modeling the assumptions are violated (e.g., robots
are coordinated so they have a different model of the system cost, or the tasks do
not have a regular arrival interval, the task distribution is not i.i.d.) To address
this, we propose simple policies that work optimally in the base case and that also
efficiently adapt to improve their performance for more complex settings.

This paper contributes a formulation of the problem of optimal task bundling
for MRTA for sequentially revealed, synergistic tasks (Sec. 3.1). Within that for-
mulation, we identify two objectives that describe two aspects performance, each
depending on bundle size in a manner opposite the other. After analyzing the
most basic scenario (Sec. 4.1), we introduce models that describe the objectives
as a function of bundle size. Using these models, our study of iterated bundle
executions leads us to propose simple and efficient bundling policies suitable for
variations of the problem which generalize the basic instance. Evaluation of our
policies (and comparison with a baseline sans-bundling) is carried out quantita-
tively with extensive experiments (Sec. 6).

2 Related work
Most previous work in MRTA with online tasks focus on the question of how

to allocate tasks. Early work on auction mechanisms [3] and greedy allocation [4]
studied the allocation of online tasks where the total number of tasks is known.
Some recent work [5, 6] considers online tasks with unpredictable arrivals, but
the option of bundling is not discussed. Online bipartite matching algorithms
(e.g., [7]), which solve the underlying mathematical problem of the online MRTA,
also do not consider bundling. Instead, they study how to match online vertices
based on their stochastic information.

While bundling tasks has not received much attention, we are certainly not
the first to propose the idea. Koenig et al. propose Sequential Single-Item (SSI)
auctions with bundles in [8]. In the bidding phase, robots submit bids for bun-
dles (i.e., subsets) of tasks from a known set of all tasks. The bidding phase and
the winner determination phase iterate sequentially until all tasks are assigned.
Compared to the standard parallel auctions, this method reduces the team’s cost
by exploiting synergies among tasks. The approach also reduces the time spent
bidding compared to the standard combinatorial auctions since not all permuta-
tions of assignments are considered. Zheng et al. [9] propose SSI with roll-outs
where single tasks are auctioned in each iteration, but the cost of each task is
evaluated together with the previously allocated tasks to each robot in order to ex-
ploit synergies. Heap and Pagnucco [10] extended SSI to bundles with Sequential
Single-Cluster (SSC) auctions where the robots bid on clusters of tasks, formed
through a k-means clustering algorithm.

Prior work with synergistic tasks uses two objectives MiniSum and MiniMax
that are analogous to our system cost per task and the timespan of a task, re-
spectively. These works have the same objective, namely, seeking the maximal
synergy and the minimal timespan. However, the prior work considers a fixed,
finite set of tasks and, as will become clear in the next section, considering an
unbounded (and unremitting) sequence of tasks constrains the set of solutions be-
cause one must ensure that the task buffer does not overrun. In general, the prior
work does not identify or have to address the consequences of bundling which
worsens time-related objectives. But when tasks arrive in an online manner, there
is a true trade-off that must be made; this aspect is absent from previous investiga-
tions. The present work also treats synergistic tasks in rather more sophisticated
manner, providing an explicit model that quantifies the improvement in objective
value.

3 Problem description
This section formulates the problem mathematically, expresses constraints on

the problem, and describes the objectives to be minimized. The multi-robot rout-
ing scenario is used as an example.

3.1 Problem formulation
Given a set R = {r1, · · · , rn} of n robots, every α > 0 time interval, a task tj

arrives and is enqueued along with other waiting tasks in a structure T. The total
number of tasks is unknown and it could be an unbounded sequence. Here α could
be deterministic or a random variable—in the latter case, we use α to denote the
mean of a distribution. We assume that robots share all available task information
(i.e., T) for example, through some communication network.

We model tasks by thinking about the costs associated with their performance—
in order to make this concrete we will assume that the application entails mobile
robots and the cost is a function of the locations of the robot and task. We assume
that locations of tasks are drawn from a probability distribution, and this has the
appropriate relationship on costs. Let c(S) be the cost of performing the set of
tasks S. We consider tasks with the property: for S1 and S2 where S1 6= S2,
c(S1) + c(S2) > c(S1 ∪ S2). In other words, performing multiple tasks together
has the potential to lump some common work together and the cost of performing
a bundle of tasks is sub-linear in bundle size, i.e., smaller than the sum of the costs
when executed independently.

Robot ri forms its own bundle Xi by extracting tasks from T, where |Xi|
would change. Once tj is assigned to Xi, it is no longer available to other robots
unless ri releases the task. Tasks continue to arrive while robots perform the work
assigned to them, that is, that which is within their respective bundles. The robots
iterate bundling and executing tasks in turn. Depending on the number of tasks in
ri’s bundle, ri may be idle while waiting to fill Xi, which we denote ri ∈ Ridle.
Otherwise, ri ∈ Ractive. Note that R = Ridle ∪Ractive and Ridle ∩Ractive = ∅.

Strategies for assigning tasks to robots make use of flexibility in (i.) making
the choice of whom to assign to a certain task, and (ii.) when to assign the task. In
general, waiting increases the available opportunities to optimize performance but,
waiting itself, induces delays. Since (ii.) is a central consideration in the present
work, it is important to delineate the requirements of the strategies for assigning
tasks. We do this by noting two necessities for the performance of online tasks:

- Unconditional Task Acceptance: Any task that arrives, must be enqueued to
T.

- Non-starvation: No task may be abandoned to remain in T indefinitely.

Subject to fulfilling those two requirements, we consider two objectives to
minimize. Since there is no fixed set of tasks in an infinite (or a very long) length
horizon, the conventional sum-of-cost measure is no longer ideal. More meaning-
ful are the average values of the following:

1. An important metric is the cost incurred by a robot to perform a task. Let
cij ∈ R≥0 represent the cost of ri performing tj , then the objective is the
average cost spent by a robot to finish a task, c̄. The average is taken across
all robots and task pairs; we call this the system cost.

2. The timespan, or end-to-end time, of a task τj ∈ R≥0 metric represents the
elapsed time from the moment task is inserted to T until its completion.
The objective is the average timespan of a task, τ̄ , taken across all tasks.

3.2 An example: the multi-robot routing problem
The multi-robot routing problem is a representative example of the setting

we describe since it involves synergistic tasks that arrive online. It is also of
natural interest since it includes features common to many application domains.
Precisely, the tasks require that some robot visit a location. The locations are
revealed sequentially and the goal is to visit all locations (as shown in Fig. 1)
while minimizing the average time traveled c̄, or the average task end-to-end time
τ̄ , or some combination of the objectives. A robot visits only one location at a
time, and the task requires that one robot arrive. A robot bundling multiple tasks
may then plan a Hamiltonian path. To solve the problem, the robots need a policy
that determines how many locations they ought to bundle and how they should
cooperate together to decide which robot should visit which locations. This is a
running example throughout the paper because it is sufficiently rich to explore the
fundamental properties underlying strategic bundling.

4 An analysis of bundle size
This section develops models for the objective values defined in the previous

section. In the basic setting, robots work independently, and tasks are revealed

O Bundle size (x)

T
im

e
(s

ec
)

xm

α

xD

Execution time
Bundling time
End-to-end time

(a) The case where x∗g = xm.

O Bundle size (x)

T
im

e
(s

ec
) Execution time

Bundling time

α

xD

End-to-end time

(b) The case where x∗g = xD.

Figure 2: Illustrative functions that describe the average system cost (red) and timespan (gray) per
task. The optimal bundle size for the system cost x∗f is unbounded for both (a) and (b) since f(·)
is strictly decreasing owing to the synergies among tasks. s(·) is infinite for x < xD and the same
with f(·) otherwise. There exists a finite bundle size x that makes g(·) minimum. g(·) for x < xD

is not shown since the value is infinite.

with a fixed interval. For these simple models, it is possible to find analytic ex-
pressions for the optima. Next, we introduce some complexity into the model
exploring, empirically, how coordination methods affect outcomes.

4.1 The base case: independent robots
4.1.1 The general model

In the base case, robots do not coordinate amongst themselves to exploit task
locality between bundles, rather they bundle and execute tasks independently. Or-
dering of tasks within their bundles is optimized locally and depends on the path
they construct. We assume stochastic tasks with locations independently and iden-
tically distributed from a Uniform distribution over a sub-region of the plane with
area S. Also, a new task is revealed every α seconds. Steady-state models of both
the system cost c̄, which is the average system cost (execution time) per task, and
the average timespan (end-to-end time) τ̄ of a task, are constructed next. It may
be helpful to refer to Fig. 2 during the exposition.

A model for c̄ is given by f(x|S, v) where x is the bundle size and v is the
task performance rate (e.g., velocity) of a robot (the red curve in Fig. 2). Task
synergies imply that f(·) is decreasing and, hence, the bundle size that minimizes
the system cost is infinite (x∗f = ∞). The functional h(x|α, n, f) describes the
average time that a task stays awaiting sufficient tasks to been enqueued to form
a complete bundle. Since tasks are added into T and are distributed to n robots,

h(·) increases when more robots are bundling, for a fixed α. But note also that
h(·) is discontinuous since h(x|α, n, f) = 0 if x < xD (the blue line in Fig. 2).
Here the quantity xD denotes the bundle size when f(x|S, v) = α, that is, the
point of equilibrium between the rate of task arrivals and (average) executions.
Below xD, |T| diverges so there is no steady-state (tasks keep being accumulated)
and robot take tasks out from T without waiting, so the bundling time is zero.
For x ≥ xD, tasks do not accumulate in the queue T, and a robot must wait for
tasks to arrive in order to fill its bundle and so the bundling time is nonzero. Thus,
h(x|α, n, f) = h′(x|α, n) for x ≥ xD, where h′(·) represents the bundling time
without considering the potential overflow of T. There is another component
s(x|α, f), the residing time of a task in T, which is the time spent by a task
before any robot has returned and begun to assemble its next bundle. We have
s(x|α, f) = ∞ for x < xD. Otherwise, s(x|α, f) = f(·) since tasks only stay in
T while robots are execute their bundles.

A model of τ̄ is given by g(x|S, v, α, f):

g(x|S, v, α, f) = max(f(x|S, v), h(x|α, n, f), s(x|α, f)), (1)

which are the thick gray curves in Fig. 2. g(·) for x < xD is not shown since
the value is infinite. The x value that makes g(·) minimum is the optimal bundle
size x∗g. Determining x∗g consists of two possible cases, shown in Fig. 2(a) and
Fig. 2(b). In Fig. 2(a), xm is the equilibrium between the task bundling time and
the execution time. At xm, the robot finishes executing a bundle when the next
bundle has just filled. Thus, x∗g = xm because g(xm|·) takes the minimum at this
point. It is important to note that there is no waiting time between iterations. In
Fig. 2(b), xm does not exist because the tasks in T overflow. At xD, the execution
time dominates the zero bundling time, and f(xD|·) has the minimum, so x∗g =

xD. Practically, x∗g is computed by max(xm
′
, xD) where xm′ is the intersection

between f(·) and h′(x|α, n).

4.1.2 The multi-robot routing example

Since the pioneering work of Beardwood et al. [11], there has been extensive
research on computing the optimal length of the tour in random instances of the
traveling salesman problem (TSP). The early models in [11, 12] are simple but
limited to the asymptotic behavior. Lee and Choi [13] proposed a more accurate
model given a finite number of cities. The multi-robot routing problem aims to
optimize the tour of each robot, which involves optimizing the Hamiltonian path

(HP)—a special case of the TSP where the return tour to the start location is
unnecessary. We modify the model in [13] for the HP. The system cost (time
traveled) per task is

f(x|S, v)

=

(
(0.7211

√
x+ 1 + 0.604)

√
S − Ed

v(x+ 1)

)
· (β log x+ 1) (2)

where S is the area of a rectangular field and v is the velocity of the robot. The
scalarEd is the expected distance between two points drawn from a uniform distri-
bution, representing the last visited location and the initial location (notice that the
initial location is also random because it is the last visited location from the previ-
ous batch). The expression 0.7211

√
x+ 1 + 0.604 from the model in [13] yields

the optimal length of a TSP tour with x locations,2 and Ed is subtracted because a
HP does not include the return trip to the initial location. The entire expression is
divided by the number of locations (per task) and scaled by

√
S
v

(length/velocity).
However, Ed is not scaled by

√
S since it already includes the size of the area as a

variable. A scaling factor, β, reflects how close the algorithm used is to optimal,
where β = 0 for an optimal algorithm with larger values for practical suboptimal
algorithms.

A task waits in a bundle (size of x) for xα − jα seconds where j is the time
when the task is inserted. Then, the sum of the bundling time for all tasks is∑x

j=1 xα − jα = x2α − x(x+1)
2

α = α
2
x(x − 1). And the function describing the

bundling time per task is

h(x|α, n, f) =

{
0 if x < xD

h′(x|α, n) = nα
2

(x− 1) otherwise.
(3)

Note that n is multiplied since tasks are distributed to n robots. Interestingly, h′(·)
is a special case of the mean residual life of a customer in a renewal process pre-
sented in [14]. The residual life is the amount of time that the customer must wait
until being served. The general form of (3) when task arrivals follow a Poisson
process is

h′(x|α, n, λ) =
nα

2

(
1 +

λ

α2

)
(x− 1) (4)

where λ is the variance of the arrival interval. If λ = 0, then (4) reduces to (3).
2 The salesman starts at one of the locations, but the robot starts from the last location in the

previous batch in our case. Thus, the total number of locations is x+ 1.

Figure 3: The models (2) (red dotted) and (3) (blue solid). The horizontal line represents α. The
greed curve shows the experimental result from a heuristic HP algorithm which is attached in the
supplementary material.

Fig. 3 shows (2) (red) as a function of bundle size (x) along with values from
experiments (green) with values α = 10, v = 1m/s, and S = 150m × 150m.
The blue line represents (3). We implemented a simple heuristic Hamiltonian path
algorithm to explore this model3, and β = 0.0542 was empirically determined for
our algorithm.

4.2 Coordinated robots
Next, we turn to coordinated robots. There are two major considerations in

thinking about the objective values for teams of closely coupled robots. The
first consideration is what task allocation method will be used to distribute tasks
from T to the robots (e.g., assignment algorithms, integer programming meth-
ods, auction-based algorithms, or etc.)4. Our implementation uses integer linear
programming (ILP) to optimally distribute tasks based on the distances between
robots and tasks. The second consideration is the degree of synchronization in the
team for the task distribution. Specifically, we need to decide how many robots
are included when distributing tasks. If the robots that have completed their tasks
wait until other robots become free, the distribution of tasks among them can make
maximal use of their spatial dispersion. If the robots do not wait, the tasks they
are assigned will suit them individually, being slightly myopic. Waiting for robots

3The algorithm is attached as a supplementary material.
4In some domains, combinatorial approaches have been studied to solve the task distribution

and optimization together (e.g., the multiple TSP [15]).

to finish their tasks allows more robots to participate in the assignment, imposing
greater synchronization on the robots. But, in a way analogous to the advantages
of large task bundles over small ones, it gives more opportunity for the optimizer
to find savings.

Modeling this coordinated case is possible when one has domain knowledge
of the sort used to build the model in Sec. 4.1.2. However, the necessary domain
knowledge is not always available so, as an alternative, one may fit a function to
empirical data. We are not aware of any model describing the system cost of the
coordinated robot team in the multi-robot routing problem. Fitting a function may
require extensive experiments be performed, which may be tedious or expensive.
Depending on the coordination method used, one can still draw inferences on how
the system cost changes by examining the model of the base case, and making
adjustments for coordinated case from a empirical data.

In Fig. 4, we show measured values of f(·) when robots are coordinated
through an ILP (averaged over 10 repetitions). The x-axis and y-axis represent
the bundle size (x) and the degree of synchronization (nILP). Given 5 robots,
nILP ranges from 1 (completely asynchronous) to 5 (completely synchronized).
Fig. 4(b) shows the system cost across different bundle sizes. The uppermost line
(lime green) shows the cost when nILP = 1. The lower-most line (brown) de-
scribes the case where nILP = 5. The result shows that a synchronized team out-
performs asynchronous robots5. There are two reasons why synchronous robots
perform better even though additional idle time is incurred in waiting for other
robots. First, as already alluded to, including more robots in the ILP makes the
resulting assignment globally optimal with the current tasks in T. Secondly, while
the robots wait for other robots, they are simultaneously getting more options for
tasks because new ones keep arriving. Since the ILP includes all tasks in T and
Ridle, the chance of lowering the cost per task increases as T grows.

On the other hand, there appears to be an anomaly in Fig. 4 as, when x is
small, the cost does not decrease monotonically with increasing x. It indicates that
bundling two tasks is worst than not bundling them. The transition between two
lines in Fig. 4(c) comes from the synchronization and the optimal task distribution.
The oddity is not observed in the independent and synchronized robot team. It is
the optimal task distribution which explains the oddity. When the bundle size is
small, tasks overflow T. Their locations are uniformly distributed in space, so
that as T overflows, robots are able to find one or two tasks with very small costs.

5The result from the independent robots case is not shown, but a synchronized team performs
better than it too.

As the bundle size increases, tasks are removed more quickly and the density of
tasks decreases, and the distance per task inevitably returns to normal. In the
independent team, the tasks are randomly distributed to robots so the dense tasks
make for no change.

By bringing these insights together one comes to the conclusion that, for the
setting being examined, the base case is an upper bound of the system cost, across
all combinations of coordination methods and degree synchronization. Fig. 4(c)
shows the base case (upper black line) and the coordinated robots case where
nILP = 5 (lower brown line). Thus, the base case provides a model that overesti-
mates cost in other cases. If we compute x∗g using the basic model, x∗g is larger or
equal to the actual optimal bundle size (e.g., the red curve in Fig. 2 moves below,
so xm or xD decrease). Without deeper domain knowledge, one cannot know the
exact x∗g but the range is determined from the basic model.

4.3 Elements of task stochasticity
Tasks locations and arrivals include uncertain elements that induce a gap be-

tween the model and the performance observed in the system. Next, we address
the issues arising from stochasticity in tasks; it motivates our introduction of
bundling policies that adapt to circumstances, and can be useful when the ideal
models fails to capture some aspects of the system.

4.3.1 Task locations

Owing to the stochasticity of task locations, the system’s cost described thus
far should be those of as describing the mean of a random variable. The particular
realizations will differ from this average value. In practice, if a robot completes its
bundle of tasks faster than the average execution time, the next bundle will not be
completely filled yet. Thus the actual x∗g would differ from the value in the basic
model.

4.3.2 Task arrival process

Though some applications certain have tasks are revealed at fixed intervals, a
probabilistic arrival process is more common. One generalization is to consider
a Poisson arrival process, modeling completely random arrivals of events. Prob-
abilistic arrivals will alter the true x∗g so that it differs from the one in the basic

(a) The system cost along x and nILP.

(b) The system cost of different nILP along x.
(This view simply projects nILP out of Fig. (a).)

(c) The comparison between the base case and
the case of coordinated robots with nILP = 5.

Figure 4: Empirical results of a team of five robots. In (b), it is shown that synchronization
improves the performance (the uppermost is the case where nILP = 1 and the lower-most has
nILP = 5). (c) shows that the basic model from Sec. 4.1 is the upper bound of all combinations of
coordination methods, synchronization.

model because h(·) is no longer deterministic (e.g., the blue line in Fig. 2 has
some variance).

5 Bundling policies
Based on the previous discussion, this section proposes some bundling poli-

cies, while the following section provides through evaluations. Each of the poli-
cies are simple algorithms that perform optimally in the basic case, but provide
broader support, being flexible enough to behave agreeably across a range of more
complex cases.

5.1 Model-based policies
5.1.1 Fixed-x policy

If the models g(·) and h(·) are available, finding an x that minimizes (1), the
end-to-end time, gives x∗g. Also, finding the x that minimizes h(·), the system cost,
gives x∗f . Let k be the bundle size that each robot takes (it may differ for different
robots if their performance rates differ, such as having different velocities). Each
robot keeps k = x∗g or k = x∗f depending on its objective. Since x∗f goes to
infinity with synergistic tasks, this is not a practical bundle size. Thus, we only
consider k = x∗g. When a robot finishes its current bundle and tries to execute
the next bundle, there might be insufficient tasks in T to form that bundle. The
robot may wait, idly, for new tasks. Let xP denote the size of T which triggers
execution of the current bundle. In the fixed-x policy, xP = x∗g. If |T| ≥ xP, the
robot takes k tasks and executes them immediately. Because this policy cannot
handle uncertainties in the task profile (discussed in Sec. 4.3) it is possible that
end-to-end time could diverge if T overflows.

5.1.2 Up-to-x policy

This policy is the same with the fixed-x policy except that the robot does not
wait to fill its bundle. In every iteration, the robot takes k tasks from T, where
k ≤ x∗g, if |T| ≥ xP = 1. This eliminates the bundling time.

5.2 Remarks
As we discussed in Sec. 4.2, when the robots are coordinated and/or synchro-

nized, then the x∗g computed from the basic model differs from the actual optimal
bundle size. Since x∗g overestimates the true value, the consequence is that it may
increase the end-to-end time to some degree, but it never causes T diverge. The
sub-optimality in end-to-end time is somewhat allayed by having a better system
cost (from the larger task bundles).

5.3 Model-free policies
5.3.1 Sweeping policy

The sweeping policy takes all tasks k = |T| if |T| ≥ xP = 1. Since the pre-
vious two polices cannot handle the case where the robots complete their current
bundles earlier than the expectation, or tasks arrive faster than the mean interval.
These two types of behavior may happen due to fluctuations away from the mean
for some period of time. This policy saves bundling time when the number of
tasks is insufficient. Also, the policy exploits the synergies maximally by taking
all available tasks. Most importantly, the policy is useful even when the models
are unavailable. The bundle size converges to a value reflecting the equilibrium
in which the execution time and bundling times are equal (in average). Fig. 5(a)
shows the changes of the bundle size versus time when task locations are uni-
formly distributed and tasks arrive regularly.

5.3.2 Averaging policy

The sweeping policy’s equilibrium is constant unless the stochastic properties
of the task location and arrival process change. The sweeping policy does not
make explicit use of a representation of the equilibrium. It is worthwhile to modify
to track the equilibrium via history. The averaging policy begins with xP = 1 and
repeats the following: if |T| ≥ xP, then the robot records the current |T| in the
history windowW (i.e.,W ← ENQUEUE(W, |T|)). It then takes k = xP tasks and
leaves the remaining tasks behind in T. Next, a new xP is computed by averaging
the previous values saved in W (i.e., xP = MEAN(W)). The smaller the window
size, the more sensitive the policy to variability.

0 20 40 60 80 100
#step

0

10

20

B
un

dl
e

si
ze

Experiment
Avg. bundle size
Optimal bundle size from model

(a) The sweeping policy

0 20 40 60 80 100
#step

0

10

20

B
un

dl
e

si
ze

Experiment
Avg. bundle size
Optimal bundle size from model

(b) The averaging policy

Figure 5: Plots showing bundle size vs. iterations. The policies converge to the optimal bundle
predicted from the model.

5.4 Algorithm
We develop a multi-robot routing algorithm with a centralized task distribu-

tion mechanism. Pseudocode appears in Alg. 1, using of the fixed bundle-size
policy. In the initialization (lines 1–8), the bundle Xi of robot i is filled with the
current location of the robot, and the optimal bundle size x∗i is computed. After
the initialization, the algorithm iterates lines 10–31 infinitely. Lines 10–17 run
for those robots that execute their Hamiltonian paths. Line 11 executes the path
and removes visited locations from the bundle. A robot transitioning into the idle
state in lines 12–16. The algorithm allocates tasks to idle robots in each step (line
19). If there are available tasks and idle robots, the bundles are updated through
ALLOCATE function.

ALLOCATE computes an optimal assignment of tasks in T to the idle robots
in Ridle, where |T| = m and |Ridle| = n′. One or more tasks are assigned to each
robot based on the cost cij where cij = ||l(ri)− l(tj)||. Let yij be a binary variable
that equals to 0 or 1, where yij = 1 indicates that ri performs tj , and yij = 0
elsewhere. Then a mathematical description of the assignment problem is

min
n′∑
i=1

m∑
j=1

cijyij (5)

subject to

n′∑
i=1

yij = 1 ∀j, (6)

yij ∈ {0, 1} ∀{i, j}. (7)

(6) prohibits a task to be assigned to multiple robots.

After computing the assignment, ∀j, with yij = 1, the associated tj is added to
Xi. Those assigned tasks are removed from T (line 20). Lines 22–31 are policy
dependent. The lines run for all idle robots, which wait until the condition for the
policy is satisfied. After that, robot i becomes active, computing a Hamiltonian
path from the locations in its batch (lines 27–29).

6 Quantitative study: comparisons of the policies
In this section, we describe experiments that examine the various polices on

the multi-robot routing problem. The coordination method called ‘IND’ randomly
distributes tasks from T to robots. As to the dimension of synchronization: asyn-
chronous robots do not wait for other robots (but may be included with other
robots by chance). In contrast, synchronized teams works as a block. We also
include numbers from a baseline where robots do not bundle but instantaneously
execute tasks one by one.

6.1 Experimental settings
For a fixed number of robots (n = 5), we assume that all robots move at the

same velocity v, and the bundle size is computed from the model is the same for
all robots. As discussed above, using x∗f is unrealistic since it would make robots
wait for an unbounded number of tasks. Thus, we minimize the end-to-end time
only, and scrutinize how the system cost changes. We set α = 5 for the regular
task arrival process. The parameter for the Poisson arrival process is λ = 1

α
,

where the mean arrival interval is λ−1 = α. Those two arrival processes have the
same mean task arrival interval. We measure the two objective values and run 10
repetitions. The results appear in Table 1 and Fig. 6.

6.2 Analysis
The results show that all bundling polices in all combinations represent sig-

nificant improvements over the non-bundling baseline. The improvement in the
time traveled is a consequence of larger bundles although we aim to optimize the
end-to-end metric. We focus on the end-to-end time in the following analysis.
Table 1(a) and Table 1(b) show the results of the fixed task arrival interval case
and the Poisson arrival case, respectively.

Algorithm 1 M-HP
Input: the number of robots n, the velocity of robots vi, the area of the field S,
the task arrival interval α
Output: Continuous executions of Xi

1 T = ∅//the set of tasks

2 Ractive = ∅//the set of working robots

3 Ridle = {r1, · · · , rn}//the set of idle robots

4 TPi = ∅//a temporal set

5 for each ri ∈ Ridle

6 Xi = {l(ri)}//l(·): the location of the input

7 Compute x∗i = max(xm, xD)
8 end for
9 while uninterrupted
10 for each ri ∈ Ractive

11 Execute Xi and remove visited locations
12 if Xi = ∅//no more location to visit

13 Ractive = Ractive \ ri
14 Ridle = Ridle ∪ ri
15 Xi = {l(ri)}//the start location of next Xi

16 end if
17 end for
18 if |Ridle| ≥ nILP

19 X1,··· ,|Ridle| = ALLOCATE(T, Ridle)//solve (5)-(7)

20 T = T \ (X1 ∪ · · · ∪X|Ridle|)//remove allocated tasks

21 end if
22 for each ri ∈ Ridle

23 TPi = TPi ∪Xi//merge the bundle with

//the remaining tasks in TPi

24 if TPi ≥ xP//xP: policy-dependent parameter

25 Xi = TPi(1 : k)//k: policy-dependent bundle size

26 TPi = TPi(k + 1 : end)
27 Xi = RANDHP(Xi)//compute an HP

28 Ridle = Ridle \ ri
29 Ractive = Ractive ∪ ri
30 end if
31 end for
32 end while

Table 1: Comparisons of policies. The values represent the mean and the standard deviation over
10 repetitions.

(a) Fixed task arrivals (α = 5)

Deg. of Time traveled End-to-end
Sync IND AS IND AS

Baseline
Async 79.31 (1.073) 78.77 (1.135) 13300 (223.7) 13210 (212.0)
Sync 78.09 (1.088) 38.53 (0.9862) 13890 (340.1) 6939 (479.8)

Fixed x
Async 24.60 (0.3407) 24.07 (0.1681) 1696 (107.6) 1434 (65.54)
Sync 24.45 (0.3596) 12.70 (0.5858) 2557 (177.7) 1059 (166.2)

Up to x
Async 28.27 (0.5257) 28.25 (0.4188) 2476 (166.6) 2344 (163.1)
Sync 26.84 (0.1947) 15.74 (0.4869) 1926 (165.0) 726.3 (126.0)

Sweeping
Async 26.58 (0.1870) 26.72 (0.2104) 2499 (160.5) 2668 (201.7)
Sync 23.78 (0.6062) 16.05 (0.9959) 834.9 (51.30) 714.96 (192.1)

Averaging
Async 27.63 (0.4369) 27.79 (0.2985) 2266 (184.6) 2321 (116.9)
Sync 27.18 (0.8579) 16.60 (0.8263) 2455 (151.3) 1650 (127.6)

(b) Poisson task arrivals (λ = 1/5)

Deg. of Time traveled End-to-end
Sync IND AS IND AS

Baseline
Async 78.49 (1.111) 78.59 (0.7917) 12910 (220.7) 12880 (152.4)
Sync 78.65 (0.7509) 39.24 (1.301) 13670 (304.0) 7264 (652.2)

Fixed x
Async 24.65 (0.2831) 23.83 (0.3252) 1613 (109.7) 1434 (70.31)
Sync 24.49 (0.5503) 13.03 (0.5994) 1787 (322.0) 1216 (286.6)

Up to x
Async 29.48 (0.6724) 29.56 (0.4917) 2610 (195.0) 2639 (257.5)
Sync 27.75 (0.6123) 16.91 (0.6896) 1688 (129.4) 760.3 (199.5)

Sweeping
Async 29.02 (0.6002) 28.76 (0.5024) 2702 (236.6) 2686 (231.7)
Sync 25.75 (0.4472) 16.66 (0.9694) 801.4 (51.73) 812.8 (208.1)

Averaging
Async 29.97 (0.5120) 29.73 (0.5907) 2475 (190.7) 2402 (216.3)
Sync 28.59 (1.404) 17.98 (0.8220) 2473 (158.5) 1615 (227.2)

(a) The time traveled (the system cost).

(b) The end-to-end time (the timespan of a task).

Figure 6: Comparisons of policies with all combinations of the arrival process (Fixed or Poisson),
the coordination method (Independent or Assignment), and the degree of synchronization (Async
or Sync). Three letters represent the combination.

In both cases, synchronizing the robots (Sync) with an optimal task distribu-
tion mechanism (AS) significantly increases performance. As discussed, this is
because including all robots in AS results in a globally optimal assignment solu-
tion. If the robots bundle tasks, Sync gains more tasks while the robots wait for
each other. This increases the chance of having lower-cost tasks in AS. Bundling
improves the performance as well. Bundling reduces the execution time which
is one of the components of the end-to-end measure (the residing time in T, the
bundling time, and the execution time). If robots finish tasks faster, the residing
time in T decreases, which is also a component of the end-to-end time. A larger
bundle increases the bundling time only, and this increase is dominated by the
decrease of other two components.

Bundling outperforms instantaneous executions. Also, with regard to coordi-
nation method: Sync outperforms Async, and AS outperforms IND. Using only
Sync does not always guarantee an improvement. If we use Sync, robots some-
times wait too long to fill the bundle. This bundling time becomes overshadows
other times in Sync and IND because the bundles of all robots should be filled, and
IND does not take maximum advantage of synchronized robots (i.e., there is no
optimization in task distribution). Using only AS also does not always guarantee
a significant improvement. Using AS with Async has robots that are quiet close
to working independently. It is unlikely that robots will finish their bundles at the
same time, so most time they individually take lower-cost tasks. In a bounded
region, visiting a bundle of random locations versus only those locations close to
the robot may have negligible difference, especially when we optimize the tour.

The fixed-x policy yields the smallest system cost. The policy never takes
fewer tasks than its overestimate of the optimal bundle size, and it exploits syner-
gies among tasks. The up-to-x policy reduces the bundling time by never waiting
to fill bundles, but this may increase the system cost. The sweeping policy is sim-
ilar to the up-to-x but without limiting the number of tasks that the robots bundle.
Therefore, the system cost is better than up-to-x, in general. The averaging policy
does not show any remarkable performance; its advantage is in dealing with noisy
patterns in the task profile.

In choosing a policy, one’s purpose must be borne in mind. To help determine
the appropriate policy, we show the results in the objective space in Fig. 7. Among
all combinations (in Fig. 7a), only non-dominated combinations are shown in
Fig. 7(b). The Pareto frontier is consists only of combinations of AS and Sync, so
coordinating and synchronizing robots is the most beneficial for both objectives.
Beyond this combination, one must select a policy. For the system cost, we would
use the fixed-x policy if models are available. Without any model, the sweeping

(a) All solutions. (b) The non-dominated solutions.

Figure 7: The objective space of the case where tasks arrive with α. The polices form a Pareto
frontier as marked in (a). The three polices correspond to the fixed-x, up-to-x, and the sweeping
policy with the synchronized robots using the ILP. The Poisson arrival case is omitted since it has
the same result.

policy is the best. For the end-to-end time, the up-to-x and the sweeping pol-
icy show similar performances. We would choose between them according to the
availability of the models.

6.3 Non-i.i.d. task locations and task arrival interval
We also run experiments with the task locations that are not independently and

identically distributed. With a probability of 0.5, a task is drawn from a Uniform
distribution within the arena that robots work. With a probability of 0.5, a task is
drawn from a Normal distribution that has the location of the last task as the mean.
The task arrival process also has the interval between tasks that is non-i.i.d. With
a probability of 0.5, the arrival process follows the Poisson process with λ which
is a sinusoidal function. With a probability of 0.5, the interval is drawn from a
Uniform distribution where the upper bound is related to the previous value of λ.

We only report results for Sync and AS. We tested the sweeping and the av-
erage policies since the models are not available in this non-i.i.d. case. The re-
sults (Table 2) show that the model-free policies outperforms the baseline method.
Among the two model-free policies, one would choose the sweeping policy since
this policy is shown to adapt itself well to changes in the task profile.

Table 2: The results from non-i.i.d. task locations and arrival intervals. Sync and AS are used.

Time traveled End-to-end
Baseline 37.64 (0.7788) 5856 (293.1)

Sweeping 14.80 (1.0594) 2660 (1096)
Averaging 21.03 (0.5740) 4566 (1461)

7 Conclusion and future work
This paper treats a variant of the multi-robot task allocation problem where

stochastic tasks arrive continuously, and the system must determine how to bundle
tasks in order to make best use of synergies between tasks. First, we proposed a
basic model to understand the foundations of bundling in this setting. Then, from
empirical studies, we explored how the model changes as a function of bundle
size, team size, task distribution method, and degree of synchronization. Based on
this qualitative study, we proposed a set of simple bundling policies to optimize the
system cost or the timespan. It is shown that bundling outperforms no bundling.
Also, the policies are able to deal with uncertainties in the task profile, such as
probabilistic task arrivals or non-i.i.d. task locations and arrival intervals.

We plan to further study the strategies to improve the performance of bundled
task execution. There are several directions for improvement. For example, robots
may swap the tasks in their bundles for additional refinements. Preemptions of
bundle executions may be useful so that some robots can stop working if they
exceed the expected execution time for their bundles. We also wish to extend our
study to tasks with negative synergies, no synergy, and (non-monotonic) complex
synergies. Moreover, we are interested in other variants of tasks, such as tasks
with deadline constraints or tasks that could be abandoned or rejected.

Appendix: a randomized heuristic HP algorithm
We implement a randomized heuristic algorithm for the HP problem. The

algorithm receives the input Xi where |Xi| = xi. It generates a list X′i of two
elements: the initial robot location and a randomly chosen visit location from
Xi (line 1). The chosen location is removed from Xi (line 2). We consider the
insertion positions in X′i: between the two elements and after the last element (we
do not consider the foremost position before the elements). In general, there are
|X′i| insertion positions in X′i. Let pl be the insertion position for l = 1, · · · , |X′i|.

The algorithm involves the following procedure for all visit locations in Xi.
From the first location, i) inserting the chosen visit location at each insertion posi-
tion and generating multiple paths (line 6), and ii) choosing the minimum length
path among the paths generated from i) (line 8). X′i increases by one in each
iteration by inserting one visit location. Once all visit locations are inserted to
X′i (at line 10), the path of xi visit locations has a reasonably small distance but
still not optimal (or near-optimal). Now the algorithm randomly chooses one visit
location tb and removes it from X′i (line 12). Then the algorithm runs i) and ii)
with tb and X′i (lines 13–16). If the resulting path is better than the previous one,
the algorithm updates the path (line 18). This improvement repeats for γxi itera-
tions, where γ ∈ Z+. The resulting Hamiltonian path would not be optimal but
near-optimal. For better results (but probably a longer running time), the stopping
point could be the time when the path distance converges.

References
[1] B. Gerkey and M. Matarić, “A formal analysis and taxonomy of task al-

location in multi-robot systems,” Int. J. of Robotics Research, vol. 23, pp.
939–954, Sept. 2004.

[2] B. Heap, “Sequential single-cluster auctions for multi-robot task allocation,”
Ph.D. dissertation, The University of New South Wales, 2013.

[3] M. B. Dias and A. Stentz, “A market approach to multirobot coordination,”
Carnegie Mellon University, Tech. Rep., 2000.

[4] B. Gerkey and M. Matarić, “Sold!: Auction methods for multi-robot coordi-
nation,” IEEE Trans. on Robotics, vol. 18, pp. 758–768, 2002.

[5] S. Amador, S. Okamoto, and R. Zivan, “Dynamic multi-agent task alloca-
tion with spatial and temporal constraints,” in International Conference on
Autonomous Agents and Multi-agent Systems, 2014, pp. 1495–1496.

[6] R. Meir, Y. Chen, and M. Feldman, “Efficient parking allocation as online
bipartite matching with posted prices,” in International Conference on Au-
tonomous Agents and Multi-Agent Systems, 2013, pp. 303–310.

[7] E. Vee, S. Vassilvitskii, and J. Shanmugasundaram, “Optimal online assign-
ment with forecasts,” in Proceedings of the ACM conference on Electronic
commerce, 2010, pp. 109–118.

Algorithm 2 RANDHP
Input: Xi, a bundle of xi tasks
Output: X′i, a reordered Xi forming a Hamiltonian path

1 P = ∅, s = 0
2 X′i = {l(ri), l(ta)}//ta is randomly chosen from Xi

3 Xi = Xi \X′i
4 for each tj ∈ Xi

5 for each pk ∈ X′i
6 P←INSERT(tj, pk)//insert tj in pk and add to P

7 end for
8 X′i = MINPATH(P)//find the minimum length path

9 P = ∅
10 end for
11 while s < γxi
12 X′i = X′i \ tb//tb is randomly chosen from X′i
13 for each pk ∈ X′i
14 P←INSERT(tb, pk)//insert tb in pk and add to P

15 end for
16 X′′i = MINPATH(P)//find the minimum length path

17 if DIST(X′i)>DIST(X′′i)//compare distances of paths

18 X′i = X′′i //if the randomly modified path X′′i is

//better than the previous one, update X′i
19 end if
20 P = ∅
21 end while
22 return X′i

[8] S. Koenig, C. A. Tovey, X. Zheng, and I. Sungur, “Sequential bundle-bid
single-sale auction algorithms for decentralized control,” in Proc. of Int.
Joint Conf. on Artificial intelligence, 2007, pp. 1359–1365.

[9] X. Zheng, S. Koenig, and C. Tovey, “Improving sequential single-item auc-
tions,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Syst., 2006,
pp. 2238–2244.

[10] B. Heap and M. Pagnucco, “Sequential single-cluster auctions for robot task
allocation,” in Advances in Artificial Intelligence, 2011, pp. 412–421.

[11] J. Beardwood, J. H. Halton, and J. M. Hammersley, “The shortest path
through many points,” in Mathematical Proceedings of the Cambridge
Philosophical Society, vol. 55, no. 04. Cambridge Univ Press, 1959, pp.
299–327.

[12] D. Stein, “An asymptotic, probabilistic analysis of a routing problem,” Math-
ematics of Operations Research, vol. 3, pp. 89–101, 1978.

[13] J. Lee and M. Choi, “Optimization by multicanonical annealing and the trav-
eling salesman problem,” Physical Review E, vol. 50, p. R651, 1994.

[14] L. Kleinrock, Queuing systems. Wiley, 1975.

[15] T. Bektas, “The multiple traveling salesman problem: an overview of formu-
lations and solution procedures,” Omega, vol. 34, pp. 209–219, 2006.

	1 Introduction
	2 Related work
	3 Problem description
	3.1 Problem formulation
	3.2 An example: the multi-robot routing problem

	4 An analysis of bundle size
	4.1 The base case: independent robots
	4.1.1 The general model
	4.1.2 The multi-robot routing example

	4.2 Coordinated robots
	4.3 Elements of task stochasticity
	4.3.1 Task locations
	4.3.2 Task arrival process

	5 Bundling policies
	5.1 Model-based policies
	5.1.1 Fixed-x policy
	5.1.2 Up-to-x policy

	5.2 Remarks
	5.3 Model-free policies
	5.3.1 Sweeping policy
	5.3.2 Averaging policy

	5.4 Algorithm

	6 Quantitative study: comparisons of the policies
	6.1 Experimental settings
	6.2 Analysis
	6.3 Non-i.i.d. task locations and task arrival interval

	7 Conclusion and future work

