What does my knowing your plans tell me?

Yulin Zhang
Dept. of Comp. Sci. & Engr.
Texas A&M University
College Station, Texas, USA
yulinzhang @tamu.edu

Abstract—For robots acting in the presence of observers, we
examine the information that is divulged if the observer is party
to the robot’s plan. Privacy constraints are specified as the
stipulations on what can be inferred during plan execution. We
imagine a case in which the robot’s plan is divulged beforehand,
so that the observer can use this a priori information along
with the disclosed executions. The divulged plan, which can be
represented by a procrustean graph, is shown to undermine
privacy precisely to the extent that it can eliminate action-
observation sequences that will never appear in the plan. Future
work will consider how the divulged plan might be sought as the
output of a planning procedure.

I. INTRODUCTION

Autonomous robots are beginning to be part of our everyday
lives. Robots may need to collect information to function
properly, but this information can be sensitive if leaked. In
the future, robots will not only need to ensure physical safety
for humans in shared workspaces, but also to guarantee their
information security. But information leakage can occur in a
variety of ways, including through logged data, robot’s status
display, actions, or, as we examine, through provision of prior
information about a robot’s plan.

Established algorithmic approaches for the design and im-
plementation of planners may succeed at selecting actions to
accomplish goals, but they fail to consider what information is
divulged along the way. While several models for privacy exist,
they have tended to be either abstract definitions applicable to
data rather than an agent operating autonomously in the world
(such as encryption [1], data synthesis [2], anonymization [3],
or opacity [4] mechanisms) or are focussed on a particular
robotic scenario (such as robot division of labor [5] or track-
ing [6, 7]).

Figure 1 illustrates a scenario where the information di-
vulged is subtle and important. It considers an autonomous
wheelchair that helps a patient who has difficulty navigating
by himself. The user controls the wheelchair by giving voice
commands: once the user states a destination, the wheelchair
navigates there autonomously. While moving through the
house, the wheelchair should avoid entering any occupied
bedrooms, making use of information from motion sensors
installed inside each bedroom. We are interested in stipulating
the information divulged during the plan execution:

Positive disclosure of information: A therapist monitors the
user, ensuring that he adheres to his daily regimen of

Dylan A. Shell
Dept. of Comp. Sci. & Engr.
Texas A&M University
College Station, Texas, USA
dshell @tamu.edu

Jason M. O’Kane
Dept. of Comp. Sci. & Engr.
University of South Carolina
Columbia, South Carolina, USA
jokane@cse.sc.edu

activity, including getting some fresh air everyday (by
visiting the front yard or back yard).

Negative disclosure of information: However, if there is a
guest in one of the bedrooms, the user does not want
to disclose the guest’s location.

Actions, observations, and other information (such as the
robot’s planned motion) may need to be divulged to satisfy
the first (positive) stipulation. The challenge is to satisfy both
stipulations simultaneously. Suppose the robot executes the
plan shown in the right of Fig. 1, and that this plan is public
knowledge. If, as it moves about, the robot’s observations (or
actions) are disclosed to an observer, then we know that the
robot will attempt to see if M is occupied. Hence, on some
executions, a third party, knowing there is a guest, would be
able to infer that they’re in the master bedroom.

This paper examines in detail how divulging the plan,
as above, provides information that permits one to draw
inferences. In particular, we are interested in how this plan
information might cause privacy violations. As we will see,
the divulged plan need not be the same as the plan being
executed, but they must agree in a certain way. In our future
work, we hope to answer the question of how to find pairs of
plans (one be to executed and one to divulged), where there
is some gap between the two, so that information stipulations
are always satisfied.

T
P £y
*s @) FRONT YARD Pl =AY
*) g

[1 -Start from D
[eamio | !

‘Is M occupied?
No Yes

Go through L | (Go through M

MASTER BEDROOM

#:T (M)

LIVING ROOM
L

\%\
oO%
DINING ROOM P

(] ==

Terminate at F

Fig. 1: An autonomous wheelchair navigates in a home. A
plan, on the right, generates actions that depend on perception
of the pink star (denoting that the bedroom is occupied).

II. PROBLEM DESCRIPTION

In this problem, there are three entities: a world, a robot,
and an observer. As shown in Fig. 2, the robot interacts with
the world by taking observations from the world as input, and

Observer with

Discl re Poli
World Robot sclosure TOUCY information stipulations
Observation % Eiscloscd =
bservation -
< ‘ :E O servation T P
i SS Discosed s
‘ g action ‘ |
Mod‘eled Mod(eled Mod(eled Mod‘eled Mod‘eled
as as as ai ai
Plannin .
& Plan Label map Filter Plan
Problem
Represented Represented App‘lied Represented Represented
as as to as as

Procrustean graph

Fig. 2: An overview of the setting: the robot is modeled abstractly as realizing a plan to achieve some goal in the world and
the third party observer as a filter with divulged plan as its prior knowledge. All four, the world, the plan, the filter, and the

divulged plan have concrete representations as p-graphs.

outputting an action to influence the world state. This interac-
tion generates a stream of actions and observations, which may
be perceived by the observer, though potentially only in partial
or diminished form. We model the stream as passing through
a function which, via conflation, turns the stream generated by
the world—robot interaction into one perceived by the observer,
the disclosed action-observation stream. As a consequence
of real-world imperfections (possible omission, corruption, or
degradation) or due to explicit design, the observer, thus, may
receive less information. For this reason, the function is viewed
as a sort of barrier, and we term it an information disclosure
policy.

The observer is assumed to be unable to take actions to
interact with the world directly—a model that is plausible
if the observer is remote, say a person or service on the
other side of a camera or other Internet of Things device.
Given its perception of the interaction, the observer estimates
the plausible action-observation streams, consistent with the
disclosed action-observation stream. This estimate can be
made ‘tighter’ by leveraging prior knowledge about the robot’s
plan. The observer’s estimate is in terms of world states, so the
notion of tightness is just a subset relation. In this paper, we
will introduce stipulations on these estimated world states and
our main contribution will be in examining how the divulged
plan could affect the satisfaction of these stipulations.

A. Representation

To formalize such problem, we represent these elements
with p-graph formalism and label map [8]. The world is
formalized as a planning problem (W, Vgoa1), where W is
a p-graph in state-determined form (see definition of state-
determined in [8, Def. 3.7]) and Vj,a is the set of goal states.
The robot is modeled as a plan (P, Vierm), where P is a p-
graph and V.., specifies the set of plan states where the plan
could terminate. The plan solves the planning problem when
the plan can always safely terminate at the goal region in finite
number of steps (see definition of solves in [8, Def. 6.3]). The
information disclosure policy is represented by a label map h,

which maps from the actions and observations from W and
D to an image space X. The observer is modeled as a tuple
(I, D), where I is a filter represented by a p-graph with edge
labels from X, D is the p-graph representing the divulged
plan with actions and observations labeled in the domain of
h. The plan in D might be less specific than the actual plan
P, representing ‘diluted’ knowledge of the plan; to capture
this, we require that all possible action-observation sequences
(called executions for short) in D should be a superset of those
in P, denoted as L(D) 2 L(P) (the set of executions is called
the language, see [8, Def. 3.5], hence the symbol L(-)).

B. The observer’s estimation of world states

Given any set of filter states B from filter I, the observer
obtains an estimate of the executions that should’ve occurred
to reach B, through a combination of the following sources
of information [9, Def. 13]:

1) The observer can ask: What are all the possible exe-
cutions, each of which has its image, reaching exactly
B in the filter? The set of executions reaching exactly
B is represented as SL. The preimages of SL, which
we denote as h~![SL], are the executions which are
responsible for arriving at B in [.

2) The observer can narrow down the estimated executions
to the ones that only appear in the divulged plan D.
The set of all executions in D are represented by its
language L(D).

3) Finally, the estimated executions can be further refined by
considering those that appear in the world, i.e., L(WV).

Hence, h =1 [SL]NL(W)NL(D) represents a tight estimation

of the executions that may happen. This allows us to find the
estimated world states, defined as W}; , by making a tensor
product T of graph W, D and h~(I), where h=1(I) is
obtained by replacing each action or observation ¢ with its
preimage h~1(£) on the edges of the p-graph I. For any vertex
(w,d,) from the product graph T', we have:

WE = WE U {w},if i € B.

C. Information stipulations on the estimated world states

Information stipulations are written as propositional formu-
las on estimated world states Wg . Firstly, we will define a
symbol w for each world state w in W. Then we can use
connectives —, A, V to form composite expressions ® that
stipulate the estimated world states involving these symbols.
The propositional formulas can be evaluated based on the
following definition:

w = True if and only if w € W5.

With all the elements defined above, we are able to check
whether the stipulation ® is satisfied on every estimate W5,
given the world graph W, information disclosure policy %, and
the observer (I, D).

III. THE OBSERVER’S PRIOR KNOWLEDGE OF THE
ROBOT’S PLAN

The divulged plan D is known by the observer prior to the
robot’s monitoring of the disclosed action-observation stream.
Depending on how much the observer knows, there are four
possibilities, from most-to least-informed:

I) The observer knows the exact plan P to be executed.
II) The plan to be executed can be hidden among a (non-
empty) finite set of plans {Py, P, ..., P, }.

IIT) The observer may only know that the robot is executing
some plan, that is, the robot is goal directed and aims to
achieve some state in Viggal.

IV) The observer knows nothing about the robot’s execution
other than that it is on W.

A p-graph exists whose language expresses knowledge for
each of these cases:

Case I. When D = P, the interpretation is straightforward:
the observer tracks the states of the plan given the stream of
observations (as best as possible, as the operation is under h).

Case II. If instead a set of plans {Py, Pa, ..., P,} is given,
we must construct a single p-graph, D, so that £(D) =
L(Py)U---UL(P,). This is achieved via the union of p-
graphs D = P Py W--- W P, cf. [8, Def. 3.6, pg. 18].

Case III. If the robot is known only to be execut-
ing some plan, we must consider the set of all plans,
P> :={P;,P,,P3,...,}. As the notation hints, there can
be an infinite number of such plans, so the approach of
unioning plans won’t work. Fortunately, another structure, P*,
exists such that £(D) = L(P*) = L(P>), which will be
proved afterwards. Here P*, a finite p-graph, is called the
plan closure.

Case IV. When taking D = W the executions are, again,
intersected with £(D) but as they already came from L£(W),
this shows why the observer is the least informed in the
hierarchy.

Next, we will show the construction of the plan closure P*
and prove that L(P*) = L(P).

To start, we describe construction of P*. The initial step is
to convert W to its state-determined form W’ = SDE(W) (this
is an operation described in [8, Algorithm 2, pg. 30]). Then,

Fig. 3: The construction of a plan generating execution s
using 7, computed as part of Algorithm 1.

to decide whether a vertex in W' exists in some plan, we
iteratively color each vertex green, red, or gray. Being colored
green means that the vertex exists in some plan, red means
that the vertex does not exist in any plan, and gray indicates
that its status has yet to be decided. To start with, we initially
color the goal vertices green, and non-goal leaf vertices (with
no edges to other vertices) red. Using the iconography of [8],
we show action vertices as squares and observation vertices
as circles. Then gray vertices of each type change their color
by iterating the following steps:

« [0 — M: J some action a reaching ®, which is not an
initial state.

e O — @ V action a reaching O.

« O — @: Y observation o reaching B, which is not an initial
state.

¢ O — O: J some observation o reaching M.

The iteration ends when no vertex changes its color. The
subgraph that consisting of only green vertices and their
corresponding edges is P*. And P* then contains only the
vertices that exist in some plan leading to the goal states. For
further detail of this algorithm for building P*, we refer the
reader to Algorithm 1.

Next, we prove that the P* constructed from this procedure
has the same language as P°°. The proof shows that any green
vertex is on some plan, by showing that we we can construct
a plan m, that will lead to a goal state within a finite number
of steps form any such vertex.

Lemma 1. £(P*)=L(P).

Proof. D: For any s = 598183 ... € L(P), according to
the definition of P°°, s is in the execution of some plan P’.
Though s, may not be a goal, using P’, s can be extended:
s’ = 8081 ... Sgtoty ...ty € L(P'), k > 0,n > 0 to reach an
element of V1. Then Vslf ' comprises vertices associated with
those in W' marked green in g’oal. And, tracing the execution
s" on P’ backwards on W', we find every vertex green back
to a start vertex. But this means they are in P*, and hence
s’ € L(P*), means s € L(P*) as well.
C: For any execution s = 598183 ... € L(P*), s reaches
woals OF S is a prefix of some execution reaching V., in W’
We show that there is a plan that can produce s. The execution
s does not include enough information to describe a plan
because: (1) it may not reach Vg’oal itself, and (2) it gives an
action after some observation that was revealed, but not every
possible observation. To address this shortfall, we will capture
some additional information during the construction of P*,
which we save in 7. This provides an action that makes some
progress, for states that can result from other observations.
Now, using s as a skeleton, construct plan where once a

transition outside of s occurs, either owing to an unaccounted-
for observation or having reached the end of s, the plan reverts
to using the actions that 7 prescribes. (See Fig. 3 for a visual
example.) This is always possible because states arrived at in
W’ under s are green. This implies that all states in W are also
assured to reach a goal states. The resulting plan can produce
s, so some plan produces s, hence s € L(P>). O

Algorithm 1: P*CONSTRUCTION(W, Vioal)

Initialize queues red, green, gray as empty
W'« SDE(W), and initialize V}, as the associated
vertices of Vyoal
Initialize plan 7 as empty
for v € V(W') do
if v €V}, then
green.append(v)
else if v has no edges to other vertices then
red.append(v)
else
gray.append(v)
Q.extend(InNeighbor(red U green)\ (red U green))
while) not empty do
v Q.pop
flag < True
if v is a O then
if one of its outgoing neighbors is @ then
red.append(v)
else if all of its outgoing neighbors are B then
green.append(v)
else
flag < False
else if v is a O then
if one of its outgoing neighbors under label a is ®
then
green.append(v) and 7[v] = a
else if all of its outgoing neighbors are © then
red.append(v)
else
flag < False
if flag then
Q.extend(InNeighbor(v)\ {red U green})
P* < subgraph(W’, green)
return P* (and also 7, if desired)

Thus, one may use D = P*, for Case Il

IV. EXPERIMENTAL RESULTS

We implemented the algorithms with Python, and execute
them on a OSX laptop with a 2.4 GHz Intel Core i5 processor.
To experiment, we constructed a p-graph representing the
world in Fig. 1 with 12 states, and the plan with 8 states.
All the experiments are finished within 1 second. The infor-
mation disclosure policy maps all actions to the same image,
but observations to different images. As we anticipated, the
stipulations are violated when the exact plan is divulged. But

we can satisfy the stipulations by disclosing less information,
such as D = W.

V. SUMMARY AND FUTURE WORK

We examine the planning problem and the information
divulged within the framework of procrustean graphs. In
particular, the divulged plan can be treated uniformly in this
way, despite representing four distinct cases. The model was
evaluated, showing that divulged plan information can prove to
be a critical element in protecting the privacy of an individual.
In the future, we aim to automate the search for plans: given P
to be executed, find a D to be divulged, where £(D) 2 L(P),
such that the privacy stipulations are always satisfied.

ACKNOWLEDGEMENTS

This work was supported by the NSF through awards
1IS-1453652, 11S-1527436, and IIS-1526862. We thank the
anonymous reviewers for their time and valuable comments.

REFERENCES

[1] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot,
Handbook of Applied Cryptography. CRC Press, Inc.,
1996.

[2] D. B. Rubin, “Discussion of Statistical Disclosure Lim-
itation,” Journal of Offical Statistics, vol. 9, no. 2, pp.
461-468, 1993.

[3] C. Dwork, “Differential privacy: A survey of results,” in
Proceedings of International Conference on Theory and
Applications of Models of Computation. Springer, 2008,
pp- 1-19.

[4] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of
discrete event systems opacity: Models, validation, and
quantification,” Annual Reviews in Control, vol. 41, pp.
135-146, 2016.

[5] A. Prorok and V. Kumar, “A macroscopic privacy model
for heterogeneous robot swarms,” in Proceedings Interna-
tional Conference on Swarm Intelligence. Springer, 2016,
pp. 15-27.

[6] J. M. O’Kane, “On the value of ignorance: Balancing
tracking and privacy using a two-bit sensor,” in Pro-
ceedings of International Workshop on the Algorithmic
Foundations of Robotics, 2008, pp. 235-249.

[7]1 Y. Zhang and D. A. Shell, “Complete characterization of
a class of privacy-preserving tracking problems,” Interna-
tional Journal of Robotics Research—in WAFR’16 Special
Issue, 2018.

[8] F. Z. Saberifar, S. Ghasemlou, D. A. Shell, and J. M.
O’Kane, “Toward a language-theoretic foundation for
planning and filtering,” International Journal of Robotics
Research—in WAFR’16 Special Issue, 2018.

[91 Y. Zhang, D. A. Shell, and J. M. O’Kane, “Finding
plans subject to stipulations on what information they
divulge,” in Proceedings of International Workshop on the
Algorithmic Foundations of Robotics, 2018.

http://nsf.gov/awardsearch/showAward?AWD_ID=1453652
http://nsf.gov/awardsearch/showAward?AWD_ID=1527436
http://nsf.gov/awardsearch/showAward?AWD_ID=1526862

	Introduction
	Problem Description
	Representation
	The observer's estimation of world states
	Information stipulations on the estimated world states

	The observer's prior knowledge of the robot's plan
	Experimental results
	Summary and future work

