
Decision diagrams as plans: Answering observation-grounded queries

Dylan A. Shell Jason M. O’Kane

Abstract— We consider a robot that answers questions about
its environment by traveling to appropriate places and then
sensing. Questions are posed as structured queries and may
involve conditional or contingent relationships between observ-
able properties. After formulating this problem, and empha-
sizing the advantages of exploiting deducible information, we
describe how non-trivial knowledge of the world and queries
can be given a convenient, concise, unified representation via
reduced ordered binary decision diagrams (BDDs). To use
these data structures directly for inference and planning, we
introduce a new product operation, and generalize the classic
dynamic variable reordering techniques to solve planning
problems. Also, finally, we evaluate optimizations that exploit
locality.

I. INTRODUCTION

This paper explores the implications of asking robots
questions, rather than telling them what to do. This model
of interaction is appropriate when robots are being used to
retrieve information about their world. Existing techniques
for planning in robot data acquisition settings, such as
informative path planning [22] and information gathering
[9], are effective at collecting large quantities of desired
data. But, while the datasets they produce tend to be useful
for aggregated statistical analysis, when one is concerned
with finer concepts involving richer semantic relationships —
particularly when efficient execution is a concern— such
methods may be too indiscriminate for those needs.

We formulate a class of useful and interesting problems
based on directly posing specific queries to the robot: the
intention is that with an exact statement of what is desired,
this can be turned into opportunities for efficiency. There is
the potential for the robot to exploit structure in the world
to draw inferences that can save work. We show how such
inference is possible (and useful for question-answering),
by combining knowledge of regularity in the world with
structured queries, both expressed in declarative form.

To that end, this paper formulates a new kind of planning
problem in which the goal is to make a set of measurements
that suffice to answer a specific YES/NO query. The paper
also describes our initial experimentation with a new declar-
ative language called Structured Robot Query Language
(SRQL, meant to be pronounced like ‘circle’) that is rich
enough to express both the regularity that structures the
robot’s world and the non-trivial queries that robots can be
tasked to resolve within that world. Throughout the paper,
fragments of SRQL code appear in green.

The authors are with the Department of Computer Science and Engi-
neering, Texas A&M University, College Station, TX, USA. {dshell,
jokane}@cs.tamu.edu This material is based upon work supported
by the NSF under Grants 1849249 & 1849291.

We also describe a method that forms plans for robots to
answer SRQL queries. The method works by representing
both the query and the world knowledge as binary decision
diagrams, performing a novel conditioning operation on
these diagrams, and finally optimizing the resulting plan
via a generalization of Rudell’s dynamic variable ordering
algorithm. In particular, we introduce a block-oriented sifting
optimization to Rudell’s algorithm that exploits the specific
local structure in these problems. Our results show that this
optimization reduces the computational cost by two orders
of magnitude.

The setting we consider, in which the robot has only partial
information about the status of the world, is a variation
upon a common refrain in robotics research [10], [13]. The
important feature here is that, though the system’s state is
only partially observable, that partial observability takes a
particular projective form, with certain elements fully known,
and other elements that are observable only within certain
locations. In that sense, the present setting dovetails closely
with the recently-proposed locally-observable Markov deci-
sion process (LOMDP) model, in which uncertainty arises
from limits on sensor range [11].

Finally, at the heart of our problem is the notion that
a robot must choose where, and in what sequence, obser-
vations should be made to capture data satisfying certain
specifications. Thus, strong parallels exist between our work
and existing methods for active sensing [14], [18], [19],
sensor selection [8], [15], [20], [21], [23], [26], and triage
of captured data [7]. In that vein, a family of close cousins
to the present work consider embodied question answering
(EQA) [3], [25], including in manipulation contexts [5].
Our approach complements that line of work —which is
strongly focused on perceptual challenges— by consider-
ing how knowledge about the structure of the world can
contribute to efficient query-resolving plans. Although our
syntax will resemble first-order logic [17], the focus is on
generating branching trees of observations. This is distinct,
also, from trees used predominantly for action, e.g., [12].

II. BACKGROUND: BINARY DECISION DIAGRAMS

A Binary Decision Diagram (BDD) is a directed acyclic
graph (DAG) data structure that encodes a boolean function
on a collection of boolean variables [1], [2]. Variables are
represented in the graph as vertices, with a pair of edges
departing every non-leaf vertex, each edge being associated
with a truth value for the vertex’s variable. There are two leaf
vertices, labeled TRUE and FALSE, and all paths traced via
edges reach one of these leaves. An encoding of a function
has a root vertex and, for any particular assignment of truth

values to the variables, one evaluates the function by starting
from the root, selecting the outgoing edge on the basis of
the variable’s value, and proceeding to the next vertex. One
continues this way until a leaf is reached. That leaf’s label is
the value of the function for the given variable assignments.

Being a DAG, any BDD can be ordered topologically in
what are usually termed levels. An ordered BDD imposes the
requirement that any variable appear in most one level. A
reduced ordered BDD is an ordered BDD with the added
property that isomorphic subgraphs —essentially identical
expressions— are collapsed into one copy, with vertices hav-
ing both edges arriving at the same vertex being elided. The
ordering helps simplify the process of matching subgraphs,
so is a practical way to realize the opportunities for compres-
sion. An important consequence of these requirements on
reduced ordered BDDs is that, when the variable ordering is
fixed, there is precisely one representation of a given boolean
function—for a given variable ordering, the reduced ordered
BDD representation is canonical. However, the complexity
of the representation, in terms of the number of vertices in
the BDD, can depend heavily on the specific order selected.

To avoid this variance, the sifting algorithm of Rudell [16]
aims to minimize reduced ordered BDD size by re-ordering
the variables. It does this by picking a variable and then
sweeping it backwards and forwards to find where the
resulting BDD is smallest. A different variable is then picked,
sifting repeated, and so on. At the core of the algorithm
is a variable swapping primitive, because exchanging two
variables in adjacent layers is a local operation on BDDs.
For additional detail on BDDs, see Drechsler and Becker [6].

III. THE PROBLEM: PLANNING FOR
OBSERVATION-GROUNDED QUERIES

A. Locations, transitions, properties

A robot operates in an environment characterized by a
finite collection L of locations, one of which is designated
as the initial location. The environment is modeled as a
weighted directed graph, in which each vertex l corresponds
to one of the locations, each edge l → m indicates direct
traversability between a pair of locations, and the non-
negative edge weights ctrav(l,m) describe additive cost (in
terms of time, energy, or other quantity of interest) for the
robot to travel directly from l to m. We write c∗trav(l,m) to
refer to the total cost of the shortest path along the graph
from l to m, possibly including intermediate vertices. The
locations, edges, and weights are assumed to be static and
known to the robot.

Though this physical layout of the environment is assumed
to be fixed and known to the robot, we are interested in
scenarios where additional details about the environment and
the objects therein are unknown. These details about the
status of the environment are characterized by a collection
P of boolean properties, each of which may be present or
absent at each location. A given location may exhibit zero,
one, or more properties.

TATE MODERN MAP

RIVER THAMES

WEST WING
NATALIE BELL BUILDING1 3 5 10 20

Room luminosity and sensing costs

11 9 7 2

512

15
14

13

8
6 4

3

1 A 1

12

2

13

B

Key

Stairs

Lifts

Escalator

Toilets

Accessible
toilets

Fig. 1: Case study scenario: a mobile robot operates in part of the
Tate Modern’s 2nd floor to answer queries put to it about art. It does
this by constructing plans, informed by the background knowledge
available to it, that provide answers when executed.

Example 1. Figure 1 is part of the floor plan of one
of London’s most vibrant art galleries: the Tate Modern.
The mobile robot we envision, following a proud line of
such robots [24], can roam this space autonomously. It is
equipped with a camera and uses detectors —learned from
data, hand-crafted, or both— capable of identify different
aspects of art (e.g., whether an item is a sculpture or a
painting, or perhaps a particularly famous piece, etc.) as
well as properties of the room it occupies (size and shape).
The two spots marked with the green nodes are the Atrium
and the Biographic information display for the artist-in-
residence; the other labeled locations are places from which
art is visible. The robot moves from room to adjoining room,
with traversal costs (ctrav) having been estimated from the
distances between regions on the map.

B. Situations, worlds, queries

A situation s : L×P→{YES,NO} is defined as a function
that maps location-property pairs to the tokens YES and
NO, indicating that the property is present or absent in
situation s. The space of all such situations is called the
situation space S. In most cases, structural knowledge about
the environment will indicate that only certain types of
situations may occur; a world model W ⊆ S, known to the
robot, captures this knowledge. In SRQL, this world model
is expressed indirectly as a collection of logical formulas that
hold for precisely those situations in W.

Example 2. For the scenario of Example 1, we can express
structure known about the world of the Tate. This includes
geometric features: for instance, we declare that location 11
has the property of being a corner as corner(loc11), and that
12 is not one with ¬¬¬corner(loc12), etc. Similarly, we declare
locations 7 and 8 to be the L-shaped ones, ell-shaped(loc07)
and ell-shaped(loc08). To state that both categories of visual
form never appear in the same location and that some form
will appear at each location, we write:
∀∀∀ x:::

(
painting(x) AND ¬¬¬sculpture(x)

)
OR(

sculpture(x) AND ¬¬¬painting(x)
)
, and

the expression ∃∃∃ z::: sculpture(z), indicates, additionally, that
there is at least one sculpture.

One of the most famous paintings in the gallery is Andy
Warhol’s Marilyn Diptych. Since it is a popular attraction,
the curators must place it, not only prominently, but in

sufficiently capacious room. Suitable rooms are locations 6,
7, 8, and 15, expressed as:

marilyn-diptych(loc06) OR marilyn-diptych(loc07) OR

marilyn-diptych(loc08) OR marilyn-diptych(loc15).
Then, we express that this piece is a painting via the

statement ∀∀∀ x::: marilyn-diptych(x)⇒⇒⇒painting(x). Finally, we point
out that the piece is unique in the following:
∀∀∀u,v, u 6 6 6===v::: marilyn-diptych(u) ⇒⇒⇒¬¬¬marilyn-diptych(v). The set of

situations that satisfy these statements taken in conjunction
forms the world model W.

The robot, operating in a specific static but unknown
situation s ∈ W, seeks to answer a boolean query, seen
as Q ⊆ S, about the situation. That is, the robot seeks to
determine, based on some combination of the world model
W and its own observations of the world, whether or not
s ∈ Q.

Example 3. With the facts about the world in place (recall
Example 2), it is possible to begin to ask questions about
the world that the robot inhabits. Our first question is ‘Are
there any paintings to see?’ It can be expressed directly in
SRQL code, thus:

Query: ∃∃∃ x::: painting(x) . (0)

Example 4. Or suppose we wish to see the Marilyn. We
might ask whether it is in location 15, as follows:

Query: marilyn-diptych(loc15). (1)

Example 5. A more interesting query might ask whether
the Marilyn is in an L-shaped room. This query is easy to
pose.

Query: ∀∀∀ x::: marilyn-diptych(x)⇒⇒⇒¬¬¬ell-shaped(x) (2)

To accomplish the goal of answering the given query, we
assume that the robot is equipped with suitable sensors to
observe which properties are extant at its current location.
However, the robot must intentionally observe a location,
incurring an observation cost cobs(l) to do so. Note that ob-
servation costs may differ according to the robot’s location.

Example 6. For our robot in the Tate Modern, the obser-
vation cost is a function of the room’s lighting level (which
influences duration that the robot must wait for an in-focus
image, operate its shutter, and post-process raw camera
images).

Taken together, we refer to the structure of locations,
transitions, travel cost function, and observation cost function
as the location graph, denoted G.

At each time step, the robot, from its current location l,
may choose either (i) to travel along some outgoing edge
l→m, deterministically reaching location m whilst incurring
cost ctrav(l,m), or (ii) to observe location l at cost cobs(l),
thereby obtaining the set {p : P | s(l, p) = YES}, a complete
and accurate reporting of the properties present at l in the
prevailing situation s.

C. Plans

In this setting, a plan may be expressed as a BDD, in
which each internal vertex asks about one specific location l
and specific property p, leading to two children correspond-
ing to s(l, p) = YES and s(l, p) = NO answers to that single-
property question. Each leaf is labeled with an answer to the
overall query, either YES or NO.

An essential question is whether a plan of this type will
guide the robot to a correct decision about its query Q ∈ Q.
The next definitions formulate this concept precisely.

Definition 1. The outcome of a plan π in situation s is the
label —either YES or NO— of the leaf reached by tracing
from the root of p along the edges in accordance with the
properties present in s.

Definition 2. A plan π correctly resolves a query Q in a
world W if, for every situation s ∈W∩Q, the outcome of
p in s is YES, and for every situation s ∈W∩ (S \Q), the
outcome of p in s is NO.

Notice that Definition 2 is silent about how the plan should
behave in situations that are outside of the world model W.

Beyond mere correctness, the robot should endeavor to
find plans that resolve their queries in a cost-efficient way.
For a given plan π , executing within a given location
graph G, consider a simple path from the root to some
leaf. Such a path can be segmented into blocks of one or
more consecutive question nodes all at the same location,
punctuated by travel from one location to the next. The cost
of executing such a path is the sum of the observation costs
cobs(l) for each block (determined by the location l shared
by the nodes in that block), plus the sum of optimal travel
costs c∗trav(l, l

′) from the initial state to the location of the
first block, and between successive blocks. Intuitively, this
represents the combined travel and execution costs for a robot
carrying out the instructions encoded in the plan. Based on
this concept of the cost of an execution, the extension to the
cost of an entire plan is straightforward.

Definition 3. The execution cost of a plan π is the maximum
(i.e. worst case) across the path execution costs for each
simple path from root to leaf within π .

The main problem addressed in the remainder of this paper
is as follows:
Given: A location graph G, a world model W, and a

query Q.
Compute: A plan π that correctly resolves Q in W, with

minimal execution cost in G.

Example 7. Figure 2 illustrates the idea of BDD-based
plans by showing a pair of plans, each of which happens
to be produced by algorithm introduced below in Section V.
Both of these plans correctly resolve Query 1. Figure 2a
shows a plan that differs from the obvious plan of going to
location 15 and observing. Instead, this plan, when started
from the Atrium as the initial location, has cost 13.7 % less
than driving to location 15.

Plan

Visit: loc06
 Observe: marilyn-diptych

Visit: loc08
 Observe: marilyn-diptych

 No

Visit: loc07
 Observe: marilyn-diptych

Yes

(a) A plan to answer Query 1.

Plan

Visit: loc15
 Observe: marilyn-diptych

Yes No

(b) Another plan to answer the same
query, but optimized for when the
robot starts at location 11 instead.

Fig. 2: Two plans generated in response to SRQL query
marilyn-diptych(loc15); that have differing execution costs. Solid and
dashed edges represent YES and NO respectively. When the robot
starts in the Atrium, plan (a) has execution cost 208.25 units, and
plan (b) cost 241.44 units. When it starts at location 11 (a) costs
277.74 units, and (b) 62.33 units.

We can also ask the same question, but now with the robot
positioned initially at location 11. (For future reference, we
shall refer to this as Query 1b). In this case, the simpler
plan shown in Figure 2b is now optimal, owing to the lower
travel distance to location 15.

Example 8. What about Query 0? In that case, the execution
cost of the optimal plan is 0, requiring no travel and no
observations! Why? Notice that the knowledge about the
world encoded in W tells us there is a painting, specifically
Warhol’s Marilyn. Thus, when asked if there are any paint-
ings to be seen, the robot doesn’t have to move anywhere to
answer in the affirmative. The robot does not know at which
location the painting might be, but that wasn’t specifically
what was asked. This example demonstrates, in an extreme
case, the value of the world model W: structure in the world
can be exploited to avoid needless effort by the robot. The
algorithm proposed below is designed to automatically detect
and utilize this structure, even in milder forms.

IV. PLANNING VIA THE CONDITIONED PRODUCT BDD

This section outlines an algorithm to solve the planning
problem introduced in Section III. The key idea is to describe
the world model W and query Q both as boolean functions,
and to represent these as ordered reduced BDDs with vari-
ables for each location-property pair. The world BDD traces
to TRUE for precisely the situations that are possible. The
query BDD arriving at TRUE implies the answer to the query
is in the affirmative; FALSE means the answer is negative.

Observe that though both W and Q can be expressed in
the same data structure, their interpretations differ. In W we
know that, to describe a situation, the tracing will arrive at
TRUE. In other words, we use the BDD to characterize the
set of inputs that make the overall boolean formula true. In
contrast, for Q, one expects that in most interesting cases
both answers would possible. We need to combine the two
BDDs, but condition on the truth of one of them.

As a result, the broad idea of the algorithm is to compute
this combined BDD through a sort of product graph oper-
ation, and then condition the combined graph upon the W

part tracing to TRUE. In detail, consider that we have a BDD
and, like the world W, we know that tracing must arrive at
TRUE. Suppose we are tracing within it and we arrive at a
vertex for variable v (for property pv at location lv). If one of
the vertex’s edges, say the YES edge, arrives at the FALSE
leaf then, as we require W to be true, we deduce that v must
be false (i.e., property pv cannot hold at lv). This conclusion
does not require any measurement:— v’s value can be known
for free at this point in the BDD or, because the variables
that precede it in the DAG have already discerned sufficient
information to determine v, we say it can be ‘inferred via
conditioning.’ Symmetrically, if it were the NO edge arriving
at FALSE, we could conclude that property pv does hold.

The general rule to condition on the truth of a BDD is
as follows: when a variable’s edge leads to a sub-DAG and
all tracings forward, passing only through variables whose
values can be inferred, always arrive at the FALSE leaf, then
that variable’s value can be inferred. And specifically, if the
edge was a YES edge, the variable is false; a NO edge means
the variable is true. One identifies this property computation-
ally via a recursive procedure that checks the property on
the two children. The previous paragraph expressed the base
case, viz. an edge leading to FALSE. Note that some variable
might have, from both of its edges, a sub-DAG that arrives
at TRUE after passing through downstream variables whose
values can be inferred. Such a variable fails to meet the
criterion to be inferred itself: that variable’s value —though
irrelevant for evaluating the boolean function expressed in
the sub-DAG— is unknown. This reasoning motivates the
following construction.

Construction. The output-conditioned product of two or-
dered BDDs with compatible variable orderings is the or-
dered BDD constructed as follows:

1) First ‘complete’ each BDD, using the levels from the
union of their variables: for any edge vp −−−→ vs, which
skips levels, say vq and vr, ordered vp ≺ vq ≺ vr ≺ vs, re-
introduce those variables by joining vp −−−→ vq, and both
vq vr and vq −−−→ vr, and both vr vs and vr −−−→ vs.
(And similarly for vp vs.)

2) Form a graph product of the two completed BDDs
in which each vertex corresponds to an ordered pair of
vertices from the original BDDs, starting from a pair with
both roots (vroot,v′root), and then tracing edges forward,
making pairs for the children so obtained. The result is
no longer a binary DAG as, in general, there will be
four out-edges from each internal node bearing the labels
(YES,YES), (YES,NO), (NO,YES), and (NO,NO). As the
variable ordering is compatible (and the prior step ensured
both BBDs have all variables), the product retains its binary
form without any restoration needed.

3) The resulting product is then conditioned using the
method described in Section IV. Since it consists of
vertices made up of variable pairs, we ask if the sub-BDD
arrives, not at the FALSE leaf, but at some (FALSE, ·) node.
All nodes with values that can be inferred are pruned. If

inference indicates that the value must be x, then bypass
the node by rewiring the incoming edge(s) directly to the
child reached by the x-labeled edge.

4) At this point we have obtained an ordered BDD, but some
structure may be repeated and it can contain superfluous
queries. To remove this redundancy, the final step is to
form a reduced ordered BDD from the result.

If the inputs are ordered BDDs encoding W and Q, the
preceding construction yields a reduced ordered BDD where
the leaves (TRUE,TRUE) and (TRUE,FALSE) correspond, to
the answers of YES and NO to the query, respectively. The
product’s construction omits nodes for variables with values
that can be inferred on the basis of W, but retains nodes for
factors which affect the query’s answer.

The construction’s correctness can be established via an
argument that takes any situation s ∈ W, and traces, in
conjunction, the world and query BDDs on one hand, and
the output-conditioned product on the other. The resulting
structure constitutes a plan π that correctly resolves Q in W.

One final note: our implementation does not carry out
the four steps stage-wise, directly one after the other, as
described here. Instead, repeated traversals can be avoided
by performing the steps simultaneously. Our implementation
uses bookkeeping to be equivalent to step 1 without intro-
ducing nodes or actually modifying edges in the pruning
of step 3, while incrementally doing a depth-first walk of
both BDDs in concert, to build the reduced ordered BDD in
postorder fashion. Our code is based on version 0.5.7 of the
open-source dd package [4].

V. FINDING BETTER PLANS BY SIFTING

Recall that the algorithm introduced in the previous section
begins from ordered reduced BDDs for W and Q, and that the
size of a reduced ordered BDD is determined by the ordering
of the variables. Even more relevant here is the fact that this
ordering also has a strong impact on the execution cost of the
resulting plan. As a result, we apply sifting methods, inspired
by Rudell’s algorithm, before the conditioned product step,
in an effort to generate more efficient plans. In our case, we
are primarily interested in plan execution cost; plan size is a
(distant) secondary consideration.1

Specifically, we consider five different sifting algorithms.
In each, for a certain order of variables, a plan’s cost is
evaluated by forming the output-conditioned product and
computing the execution cost of Definition 3 on the result.
Two are fairly straightforward:
1. Rudell’s classic sifting algorithm [16], as a baseline. It

re-orders individual variables to reduce the size of the
BDD.

2. Rudell’s classic sifting but with plan costs. This method
operates on individual variables but constructs the product

1A graph with fewer nodes means fewer observations, which does suggest
so smaller size might correlate with lower execution cost: the discussion of
empirical results in Section VI examines data regarding this question.

to evaluate whether a sifting move has improved worst-
case cost of execution of the plan.

The remaining three variations exploit the specific struc-
ture of the execution cost that we seek to optimize.

Notice that two BDD variables that refer to properties at
the same location incur no traversal cost to measure one after
the other. Thus, one expects variables associated with the
same location to appear in blocks in cost-minimal plans. This
motivates the concept of sifting-by-block. The idea is treat
variables in per-location blocks, and to sift whole blocks at a
time. This still uses the same underlying variable swapping
primitive, but only the pays the computational price of
forming an output-conditioned product after complete block
movements. We consider three approaches based on this idea.
3. Sifting-by-block, which moves whole blocks of variables

(those tied to a single location) together before construct-
ing the product to evaluate plan execution cost.

4. A version of sifting-by-block that, once plan execution
costs have been reduced, then sifts variables (restricted
to only within blocks) in order to reduce BDD size.

5. A version like the previous, but which first optimizes size
(with sifting within blocks) and only then uses sifting-
by-block to optimize plan execution cost.

Section VI presents a quantitative evaluation and analysis of
these five variations.

VI. CASE STUDY: REVISITING THE TATE

Examples 1–4 introduced a problem domain in which the
algorithms of Sections IV and V can be exercised.

First, some illustrative examples based on variant 3 of
the sifting algorithm. One illustration has appeared already:
Figure 2 shows two plans generated by it for Query 1.

For Query 2, the planner tends to produce one of three
plans, either visiting location 6 followed by location 15 (with
a cost of 244.44) or location 8 followed by 7 (with a cost
205.25 units) or, the majority of the time (59 %, being 2.7×
more likely to be generated than the next most frequently
returned plan), location 7 followed by 8 (costing 170.02
units). Now, suppose the two central L-shaped rooms have
particularly high foot traffic. This might cause the robot to
spent a great deal of time avoiding visitors, incurring greater
costs for observations in those places. This is easily captured
by modifying their respective observation costs. Doing so
and then asking the same question (dubbed Query 2b) causes
the 6→15 route, with unchanged cost 244.44, to be the
preferred choice, being found 65 % of the time (being 1.9×
more likely than the next most frequently generated plan).

Perhaps, as you glance at the current exhibits at the
Tate, you recall that two of your favorite living artists,
Marwan Rechmaoui and Yinka Shonibare, may have art on
display in the gallery. Rechmaoui’s pieces (including Beirut
Caoutchouc) as well as Shonibare’s art (e.g., Grain Weevil)
have been part of the collection in the past. Suppose you
know that, if they are still available for viewing, that the
former’s sculpture would be at location 13, while latter’s
at location 12. You have conflicting reports that each is
currently the artist-in-residence, meaning that if their art is

Plan

Visit: locB
 Observe: marwan-rechmaoui

Yes No

(a) An efficient plan for Query 3.

Plan

Visit: loc12
 Observe: yinka-shonibare

Visit: loc15
 Observe: marilyn-diptych

 No Yes

(b) An efficient plan for Query 4.

Fig. 3: Plans for Query 3 and Query 4, the second being the logical
conjunction of Queries 1 and 3.

on display, then they will be featured in the infographic at
location B. These facts are expressed in SRQL as part of
the world knowledge as follows:((

yinka-shonibare(locB) AND yinka-shonibare(loc12)
)

OR(
¬¬¬yinka-shonibare(locB) AND ¬¬¬yinka-shonibare(loc12)

))
AND((

¬¬¬marwan-rechmaoui(locB) AND ¬¬¬marwan-rechmaoui(loc13)
)

OR(
marwan-rechmaoui(locB) AND marwan-rechmaoui(loc13)

))
,

and also, with just a single artist-in-residence at any time,
only one will be featured:

yinka-shonibare(locB) XOR marwan-rechmaoui(locB).

Then a query of interest just asks the robot whether we’ll
be able to see Yinka Shonibare’s art:

Query: ∃∃∃ x::: yinka-shonibare(x) . (3)

Using this information, the planner gives a simple strategy
for the robot (see Figure 3a), with cost 87.37 units: drive
to B and determine whose biographic information is featured.
Going directly to location 12 would incur cost 217.00.

But then, being pushed for time, we want to know if we
can see the Marilyn in location 15 as well as Shonibare’s
art. So we combine Queries 1 and 3 as follows:

Query: ∃∃∃ x::: yinka-shonibare(x) AND marilyn-diptych(loc15) (4)

The planner’s solution for Query 4, with cost 280.63,
is shown in Figure 3b. Noteworthy is that while Query 4
combines information needed to answer Queries 1 and 3, the
optimal solution combines two plans that were dominated for
either of those two.

While the previous discussion has showcased SRQL
in some simple cases, it has not provided any results on
comparative performance. We ran 5 different methods on 9
queries: namely Queries 0, 1, 1b, 2, 3b, 3, 4, along with
two additions that produce more interesting plans:

Query: ∀∀∀ x::: sculpture(x)⇒⇒⇒
(
¬¬¬ell-shaped(x) OR corner(x)

)
. (5)

Query: ∃∃∃ x::: sculpture(x) AND ¬¬¬ell-shaped(x) (6)

We collected data on processing time, the resulting size
of the BDD, and worst-case execution cost of plans for each
of the methods. Each execution started with random initial
conditions, with variables placed within location-oriented
blocks and blocks randomly shuffled, but identical initial
conditions tried on each of the methods. Each method was
executed a total of 100 times. The processing times are
summarized in Figure 4. Data on quality of the resulting plan

Fig. 4: Computation times for the sample queries in the Tate gallery.

Fig. 5: The size and quality of resulting plans for the sample
queries, varying each method. Result size is measured in BDD
vertices. Quality is measured by execution cost.

appears in Figure 5. (Recall that Query 0 is an exceptional
case, where an empty plan suffices.)

Intuitively, Rudell’s classic sifting algorithm might do
well, because fewer variables does imply that less navigation
would be required. But while it is efficient to compute
(shown in Figure 4), its optimization of size, at best a
surrogate to plan execution cost, is a poor solution. Indeed,
Figure 5 shows that evaluating execution cost is important:
The particular locations, not merely their cardinality, plays a
decisive role. Classic sifting with plan costs produces high-
quality results, but is slow. The last three methods incur no
loss in quality, but with a two-order of magnitude reduction
in computational time. We see that also compressing for size
(before or after) makes only a marginal difference.

VII. CONCLUSION AND OUTLOOK

The present paper has advocated asking robots questions and
having them combine what they know of the world, along
with their ability to go out and probe it, as a way of being
useful. This forms a sort of high-level abstraction, where the
user is less concerned about how a robot acts than that it
obtains the needed information. A core technical challenge
is to find representations that are rich enough while not
requiring impractical amounts of storage. Reduced ordered
BDDs appear to be a promising candidate; future work will
examine modifications (e.g., beyond Boolean to multi-valued
expressions), optimizations (e.g., re-use for sets of queries),
and specializations to better address their uses and abuses in
planning.

REFERENCES

[1] Henrik R. Andersen. An introduction to binary decision diagrams.
In Lecture notes for “Efficient Algorithms and Programs”. The IT
University of Copenhagen, 1999.

[2] Randal E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, C-35(8):677–690,
August 1986.

[3] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi
Parikh, and Dhruv Batra. Embodied question answering. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018.

[4] The dd python package, available at https://github.com/
tulip-control/dd.

[5] Yuhong Deng, Naifu Zhang, Di Guo, Huaping Liu, Fuchun Sun, Chen
Pang, and Jing Pang. MQA: answering the question via robotic
manipulation. In Robotics: Science and Systems, 2020.

[6] Rolf Drechsler and Bernd Becker. Binary decision diagrams: theory
and implementation. Springer, 2013.

[7] Yogesh Girdhar and Gregory Dudek. Optimal online data sampling or
how to hire the best secretaries. In Canadian Conference on Computer
and Robot Vision, pages 292–298, 2009.

[8] A. Haji-Valizadeh and K. A. Loparo. Minimizing the cardinality of an
events set for supervisors of discrete-event dynamical systems. IEEE
Transactions on Automatic Control, 41(11):1579–1593, 1996.

[9] Geoffrey Hollinger and Gaurav Sukhatme. Sampling-based mo-
tion planning for robotic information gathering. In Proceedings of
Robotics: Science and Systems (RSS), Berlin, Germany, June 2013.

[10] Steven M. LaValle. Filtering and planning in information spaces.
Technical report, Department of Computer Science, University of
Illinois, 2009.

[11] Max Merlin, Neev Parikh, Eric Rosen, and George Konidaris. Locally
observable Markov decision processes. In ICRA 2020 Workshop on
Perception, Action, Learning, 2020.

[12] Petter Ögren and Christopher I Sprague. Behavior trees in robot
control systems. Annual Review of Control, Robotics, and Autonomous
Systems, 5:81–107, 2022.

[13] Robert Platt Jr, Russ Tedrake, Leslie Kaelbling, and Tomas Lozano-
Perez. Belief space planning assuming maximum likelihood observa-
tions. In Robotics: Science and Systems, 2010.

[14] Hazhar Rahmani, Dylan A. Shell, and Jason M. O’Kane. Planning to
[23] Tae-Sic Yoo and S. Lafortune. NP-completeness of sensor selection

problems arising in partially observed discrete-event systems. IEEE
Transactions on Automatic Control, 47(9):1495–1499, 2002.

chronicle: Optimal policies for narrative observation of unpredictable
events. International Journal of Robotics Research, 2022.

[15] Hazhar Rahmani, Dylan A Shell, and Jason M O’Kane. Sensor
selection for detecting deviations from a planned itinerary. In Pro-
ceedings of IEEE/RSJ International Conference on Intelligent Robots
and System, pages 6511–6518, 2021.

[16] Richard Rudell. Dynamic variable ordering for ordered binary decision
diagrams. In Proceedings of the IEEE International Conference on
Computer Aided Design (ICCAD), pages 42–47, 1993.

[17] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach, Fourth Edition. Pearson Education Limited, Harlow, United
Kingdom, 2022.

[18] Allison Ryan and J Karl Hedrick. Particle filter based information-
theoretic active sensing. Robotics and Autonomous Systems,
58(5):574–584, 2010.

[19] Paolo Salaris, Riccardo Spica, Paolo Robuffo Giordano, and Patrick
Rives. Online optimal active sensing control. In Proceedings of IEEE
International Conference on Robotics and Automation, pages 672–678,
2017.

[20] Meera Sampath, Raja Sengupta, Stéphane Lafortune, Kasim Sinnamo-
hideen, and Demosthenis Teneketzis. Diagnosability of discrete-event
systems. IEEE Transactions on Automatic Control, 40(9):1555–1575,
1995.

[21] David Sears and Karen Rudie. Minimal sensor activation and minimal
communication in discrete-event systems. Discrete Event Dynamic
Systems, 26(2):295–349, June 2016.

[22] Amarjeet Singh, Andreas Krause, and William J Kaiser. Nonmyopic
adaptive informative path planning for multiple robots. In Proceedings
of International Joint Conference on Artificial Intelligence (IJCAI),
pages 1843–1850, 2009.

[24] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert,
D. Fox, D. Hahnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz.
MINERVA: A Second-Generation Museum Tour-Guide Robot. In
ICRA, volume 3, pages 1999–2005, 1999.

[25] Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das,
Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, and Dhruv
Batra. Embodied question answering in photorealistic environments
with point cloud perception. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

[26] Xiang Yin and Stéphane Lafortune. A general approach for optimizing
dynamic sensor activation for discrete event systems. Automatica,
105:376–383, 2019.

https://github.com/tulip-control/dd
https://github.com/tulip-control/dd

	Introduction
	Background: Binary decision diagrams
	The problem: Planning for observation-grounded queries
	Locations, transitions, properties
	Situations, worlds, queries
	Plans

	Planning via the conditioned product BDD
	Finding better plans by sifting
	Case Study: Revisiting the Tate
	Conclusion and outlook
	References

