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temporal structure provides useful Model reduction — reducing temporal correlation
compromise between quality of

solution obtained and computation

required. The number states in each demand model increases the planning problem
multiplicatively. The non-causality of the demand model provides opportunity
to simplify and analyze them independently beforehand.

State transitions within demand model reflect aspect of the stochastic
process which describe uncertainty.

Output: A policy of valid actions that minimizes the
expected time for all commodities to be
consumed.
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