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Model reduction – reducing temporal correlation

Iterative model 

reduction by 

collapsing similar 

states

(Hellinger distance)

Model 

reduction to a 

single state by 

Fundamental 

Matrix Analysis

The number states in each demand model increases the planning problem 
multiplicatively. The non-causality of the demand model provides opportunity 

to simplify and analyze them independently beforehand.

Overview

• Inclusion of sophisticated, time-correlated
stochastic models of demand is the key to
improving flexibility in modern logistic planning.

• Dynamic models of demand, unfortunately, can
increase the space in which planning occurs when
treated via the Markov Decision Process
formulation.

• In this paper, we subdue the growth in complexity
via decoupling.
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Solution to logistic problem via decoupling

Decoupled approach to 

approximate solutions

Retaining some amount of

temporal structure provides useful

compromise between quality of

solution obtained and computation

required.

When there are multiple sites
and different influence on
demand at these sites, they
can be factored by splitting
into separate site-specific
models.

Though one may not know future demand, one can usually determine current
demand through suitable instrumentation (say, via market analysis).

Logistic Problems

State transitions within demand model reflect aspect of the stochastic
process which describe uncertainty.
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Problem statement

Given: A set of commodities, a logistic network,
set of demand models, a vertex mapping
function, and an initial storage.

Output: A policy of valid actions that minimizes the
expected time for all commodities to be
consumed.

Logistic network

A logistic network is a 4-tuple 𝐿 = (𝑉, 𝐸, 𝑆, 𝑈)
where: (1) 𝑉 is the non-empty set of vertices;     
(2) 𝐸 ⊆ 𝑉 × 𝑉 be the symmetric directed edges of 
the network; (3) 𝑆 is the vertex storage capacity 
function; and (4) 𝑈 is the edge bandwidth 
function.

Demand model
A demand model is a 5-tuple 𝑀 =
(𝑊, 𝐶,𝑤0, 𝜏, 𝛿) where (1) 𝑊 is the non-empty 
finite state space with 𝑤0 being the initial 
state; (2) 𝐶 is the commodity set; (3) 𝜏:𝑊 ×
𝑊 → [0, 1] is the transition probability 
function; and (4) 𝛿:𝑊 × 𝐶 → [0, 1] is the 
demand function.

Routing grain: rice and wheat

An autonomous operation agent is responsible for
routing multiple commodities (rice and wheat)
within a logistic network (green highlight) having
site-specific demands (blue highlight).

Lean manufacturing

An autonomous agent in a lean manufacturing factory
floor (green highlight) producing nails and screws must
transport raw materials in from of iron bars. Assume
that the demand for nails and screws is directly
reflected on the demand for iron bars (blue highlight).

Drawback of reduction via FMA 

and Hellinger distance.

Model reduction approaches
presented here are few of many
approaches that can be used to pre-
analyze the demand model in order
to generate efficient approximate
solutions. They are myopic and other
approaches may provide better
efficiency.

This constructed 
example shows 
a case where 
reduction based 
on Hellinger 
distance is 
detrimental; 
giving poor 
policy and a 
requiring longer 
time to 
solve.

Manual reduction 
(right) performs better 
than reduction via 
Hellinger distance or 
FMA reduction.
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FMA approach uses matrix analysis on each
demand model to collapse all the states
into a single state. This collapse of states
destroys the temporal structure of the
original demand models and reduces the
dynamics of consumer demand for every
commodity into a Bernoulli random
variable.

FMA reduction

• Each state of the demand model is 
associated with two distributions: (a) 
distribution over the states of the demand 
model, given by the transition function 
𝜏(𝑤,⋅); and (b) joint probability 
distribution over every commodity derived 
from the demand function 𝛿(𝑤,⋅). 

• To quantify the similarity between two 
states, we need to quantify the similarity 
between their two distributions.

• We introduce a modified formulation of
the Hellinger distance with parameter 𝛼
that assigns preference of one distribution 
over the other.

The Hellinger distance approach provides a
method to collapse two similar states into
one. Therefore, it gives a spectrum of in-
between reductions as it can be applied to
the original demand function iteratively.

Collapsing state pairs
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