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Abstract— Reduction of combinatorial filters involves com-
pressing state representations that robots use. Such optimization
arises in automating the construction of minimalist robots. But
exact combinatorial filter reduction is an NP-complete problem
and all current techniques are either inexact or formalized with
exponentially many constraints. This paper proposes a new
formalization needing only a polynomial number of constraints,
and characterizes these constraints in three different forms:
nonlinear, linear, and conjunctive normal form. Empirical
results show that constraints in conjunctive normal form
capture the problem most effectively, leading to a method
that outperforms the others. Further examination indicates
that a substantial proportion of constraints remain inactive
during iterative filter reduction. To leverage this observation,
we introduce just-in-time generation of such constraints, which
yields improvements in efficiency and has the potential to
minimize large filters.

I. INTRODUCTION

A growing body of work has described tools, employed
optimization methods, or proposed new algorithms to help
automate the design and/or fabrication of robots (e.g., [1–
5]). Important among those approaches are algorithms that
aim to manage or minimize resources (for instance, see [6]).
Memory is one resource of particular interest to us, not
because RAM is expensive, but rather because when state
requirements are reduced this often conveys insight into
the fundamental informational structure of particular robot
tasks (cf. [7, 8]). To this end, we focus on filter reduc-
tion, targeting combinatorial filters of the style promoted
by LaValle [9]. These filters are discrete variants of the
probabilistic estimators ubiquitous in modern robotics, and
they yield particularly elegant treatments for certain practical
tasks (e.g, see [10]). The minimization problem for combina-
torial filters is simple to state and easy to grasp, but continued
work on the topic [11–16] shows that it involves more than
first meets the eye.

As a simple example to motivate filter minimization,
consider the safari park with vehicle rental service shown
in Figure 1a. The cars for hire are each equipped with a
compass and an intelligent gear shifting system. The compass
measures the heading of the vehicle before and after its
movement, e.g., ‘nw’ means that the vehicle was heading
north and then turned to face west. The intelligent gear
shifting system takes the readings from the compass as input,
and automatically shifts gears to abide with the speed limit.
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Fig. 1: (a) A safari park with vehicles for hire. The vehicles are
equipped with an intelligent gear shifting system automatically
shifts gears to satisfy the speed limit according to its compass
readings. (b) A naïve filter to implement the intelligent gear shifting
system. (c) A minimal filter for the intelligent gear shifting system.

There are three types of speed limits on roads: (a) between
15 and 30 (gray), (b) speeds below 30 (brown), or (c) slower
than 15 (green). Every vehicle is capable of moving with
a low gear to drive with a maximum speed 15, and with a
high gear to drive between speed 15 and 30. A naïve gear
shifting system satisfying the speed limits is realized by a
filter shown in Figure 1b: each vertex represents a system
state, each edge represents the state transition, with the label
on the edges representing the readings from the compass.
A vertex is colored gray if the system outputs high gear,
colored green if it outputs low gear, or colored both colors
if the system may use either gear (via, say, a nondeterministic
choice). We are interested in finding a minimal filter, like the
one shown in Figure 1c, that realizes appropriate behavior
but with fewest states.

A natural way to proceed is by first constructing a discrete
state-transition system (such as in Figure 1b) using the
problem description as a basis. Then, the next step is to
apply some algorithm capable of compressing it. Despite the
apparent similarity of combinatorial filter minimization to
the problem of state minimization of deterministic automata,
with Myhill–Nerode’s famous and efficient reduction [17],
minimization of combinatorial filters is NP-complete [11].
One thread of work studies filter minimization based on
merger operations. These algorithms reduce filter minimiza-
tion to a graph coloring instance [11–13] or integer linear
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programming [16]. Saberifar et. al. [13] examined special
cases, approximation and parameterized complexity of filter
minimization. Rahmani and O’Kane [14] showed that the
well-known notion of bisimulation relation in general yields
only sub-optimal solutions. They proposed three different
integer linear programming formulations to search for the
smallest equivalence relation [16]. Recent work shows that
both merge and split operations are necessary to find a
minimal filter [15]. It formalizes the problem as a clique
cover problem subject to the constraint that the output filter
should be deterministic and must simulate the output of
the input filter. But both criteria involve constraints that are
exponential in size, which is unattractive computationally.

In this paper, we propose a new, competing formulation
of the filter minimization problem with only a polynomial
number of constraints and which yields a concise non-
linear integer programming formulation. Since employing
nonlinear constraints is generally computationally inefficient,
we ‘flatten’ these nonlinear constraints leading to (1) an
integer linear programming and (2) a Boolean satisfaction
formalism—both involve expressions of constraints that are
of comparable size. Looking at the experimental results in
depth, we observed that many constraints remain inactive
during the iterative search for a minimal filter. To speed com-
putation within the Boolean satisfaction formalism, we treat
these constraints just-in-time: only introducing a constraint
when we detect that some proposed variable assignment
would violate it. Empirical results show that the speedup
from this treatment can outweigh the overhead of detecting
and dynamically introducing the constraints.

After presenting the problem statement in Section II, we
first formalize filter minimization as an integer nonlinear
program in Section III. Based on that, we give integer
linear programming and Boolean satisfaction formulations
in Section IV. Experimental results appear in Section V.

II. PROBLEM DESCRIPTION

A. Combinatorial filters and their minimization

We firstly recall the notion of a combinatorial filter:

Definition 1 (procrustean filter [18]). A procrustean filter,
p-filter or filter for short, is a 6-tuple (V, V0, Y, τ, C, c) in
which V is a non-empty finite set of states, V0 is the set of
initial states, Y is the set of observations, τ : V × V → 2Y

is the transition function, C is the set of outputs (colors),
and c : V → 2C \ {∅} is the output function.

The sets of states, initial states, and observations for filter
F are denoted V (F ), V0(F ) and Y (F ), respectively. Without
loss of generality, we treat a filter as a graph with states as
its vertices and transitions as directed edges.

Given a filter F = (V, V0, Y, τ, C, c), an observation
sequence (or a string) s = y1y2 . . . yn ∈ Y ∗, and states
v, w ∈ V , we say that w is reached by s (or s reaches
w) when traced from v, if there exists a sequence of states
w0, w1, . . . , wn in F , such that w0 = v, wn = w, and
∀i ∈ {1, 2, . . . , n}, yi ∈ τ(wi−1, wi). We denote the set of
all states reached by s from a state v in F with VF (v, s)

(also called s-children of v), and denote all states reached
by s from any initial state of the filter with VF (s), i.e.,
VF (s) =

⋃
v0∈V0

VF (v0, s). If VF (v, s) = ∅, then we
say that string s crashes in F starting from v. We also
denote the set of all strings reaching w from some initial
state in F as SFw = {s ∈ Y ∗|w ∈ VF (s)}. The set of
all strings that do not crash in F is called the interaction
language (or, briefly, just language) of F , and is written as
L(F ) = {s ∈ Y ∗|VF (s) 6= ∅}. We also use C(F, s) to
denote the set of outputs for all states reached in F by s,
i.e., C(F, s) = ∪v∈V(F,s)c(v). For empty string ε, we have
C(F, ε) = ∪v0∈V0

c(v0).

Definition 2 (output simulating). Let F and F ′ be two filters,
then F ′ output simulates F if ∀s ∈ L(F ), C(F ′, s) 6= ∅ and
C(F ′, s) ⊆ C(F, s).

Informally, one filter output simulates another if it admits
all strings from the other filter and does not generate any
new outputs for each of those strings.

We focus on filters with deterministic behavior:

Definition 3 (deterministic). A filter F = (V, V0, Y, τ, C, c)
is deterministic or state-determined, if |V0| = 1, and for
every v1, v2, v3 ∈ V with v2 6= v3, τ(v1, v2)∩τ(v1, v3) = ∅.
Otherwise, we say that the filter is non-deterministic.

Algorithm 2 in [19] can be used to make any non-
deterministic filter into a deterministic one. Then the filter
minimization problem can be formalized as follows:

Problem: Filter Minimization (FM)
Input: A deterministic filter F .

Output: A deterministic filter F † with fewest states, such
that F † output simulates F .

We have also a filter reduction problem as follows.

Problem: k-Filter Reduction (k-FM)
Input: A deterministic filter F .

Output: A deterministic filter F † with no more than k
states, such that F † output simulates F .

From now on, by filter we mean a deterministic filter, and
we shall also assume F has no unreachable states.

III. NONLINEAR INTEGER PROGRAMMING FORMULATION

In previous work [15], we expressed the two requirements
on the output, namely output simulating F and being deter-
ministic, via compatibility relationships to characterize sets
of states that can be merged. Since there can be exponen-
tially many compatible subsets, they are space-inefficient
to represent explicitly and time-inefficient to enumerate. In
this section, aiming for concision, instead of enumerating
compatibility relationships, we represent filters via vertex
covers. These covers can be encoded with a polynomial
number of binary variables, they allow for determinism and
output simulation requirements to be expressed, and they
allow us to solve FM as an instance of an integer nonlinear
program.



A. The vertex cover representation of a filter

To begin, define the basic combinatorial object involved:

Definition 4 (vertex cover). A vertex cover K =
{K1,K2, . . . ,Km} on a filter F is a collection of subsets of
vertices which cover all F ’s vertices, i.e., Ki ⊆ V (F ) for
each i, and

⋃m
i=1Ki = V (F ). The size of K is number of

the subsets, i.e., |K| = m.

A vertex cover K = {K1,K2, . . . ,Km} on filter F is
zipped if for every subset Ki ∈K and for each observation
y ∈ Y (F ), there exists at least one subset Kj ∈ K that
contains all y-children of the states within Ki. Next, we
show how a zipped vertex cover begets a filter.

Definition 5 (induced filter). Given zipped vertex cover K =
{K1, . . . ,Km} on F = (V, {v0}, Y, τ, C, c), its induced filter
F † = (V †, {v†0}, Y, τ †, C, c†) is constructed as follows:

1) Create a state v†i in F † for each non-empty subset Ki.
2) Select an arbitrary vertex v†i as v†0, such that the

corresponding Ki contains the initial state v0 in F .
3) For each vertex v†i and y ∈ Y , if y-children of vertices

in Ki is not empty, then add one transition from v†i to
v†j under y such that Kj contains all y-children of Ki;
if there are multiple such v†j s, pick an arbitrary one.

4) Assign the output for v†i to be c†(v†i ) ∈
⋂

v∈Ki
c(v),

i.e., an output common to all vertices in Ki.

Note that each vertex in filter F may be contained in
multiple subsets in the vertex cover, and that each subset
in the cover is mapped to a unique vertex in the induced
filter. Hence, we say that each vertex in F may be mapped
to multiple vertices in the induced filter.

Being zipped ensures that, for any y with children, there
is always an outgoing transition in 3) of Definition 5. Thus,
the construction never shrinks the filter’s language.

Lemma 1. Let F † be the induced filter for a zipped vertex
cover K on a filter F . It holds that L(F ) ⊆ L(F †).

Proof sketch. This lemma can be proved by induction on the
length of strings s ∈ L(F ) that shows if s reaches a state v in
F , then s reaches a state v†i in F † such that the corresponding
Ki contains v. This will show that if s ∈ L(F ), then s ∈
L(F †), meaning that L(F ) ⊆ L(F †).

The next throws light on why vertex covers interest us.

Lemma 2. Given an input filter F = (V, {v0}, Y, τ, C, c), if
there exists a solution to k-FM, then there is always a filter
F † as a solution to k-FM such that F † is induced from a
zipped vertex cover on F .

Proof. Let F ? = (V ?, {v?0}, Y, τ?, C, c?) be any solution to
k-FM with input F . From F ? and F , we construct a zipped
vertex cover K on F , then construct an induced filter F †

from K and show that F † is also a solution for k-FM.
We construct K as follows: For every state v?i ∈ V ?,

construct set Ki = {v ∈ V | SFv ∩ SF
?

v?
i
6= ∅}, and form

K = {K1,K2, . . . ,K|V ?|}. Collection K is a vertex cover

on F because by assumption L(F ) ⊆ L(F ?), which implies
that for each v ∈ V there is at least one vertex v? ∈ V ?

with SFv ∩ SF
?

v? 6= ∅, and this means that each vertex v of
F is contained in at least one subset K ∈ K. In addition,
K is zipped, otherwise some string is in F but not in F ?,
contradicting the fact that F ? output simulates F .

Now, we show that F †, constructed from K following
Definition 5, is also a solution to k-FM. Trivially, |K| =
|V ?| ≤ k, and |V (F †)| ≤ |K|. Hence, |V (F †)| ≤ k.

We will prove by contradiction that F † output simulates F .
Suppose F † does not output simulate F . Then there must be
a string s ∈ L(F ), such that either (i) s 6∈ F †, or (ii) at least
two states are reached by s in F † (F † is non-deterministic),
or (iii) C(F †, s) 6⊆ C(F, s). Regarding case (i), since s ∈
L(F ) and L(F ) ⊆ L(F ?), we have s ∈ L(F ?). Let v?j be
a vertex reached by s in F ?. Then s must also reach v†j in
F †, which indicates that s ∈ F †. Regarding case (ii), let v†j
and v†l (j 6= l) be two states in F † that are reached by s.
Notice that there is an injective function from the vertices and
edges in F † to those in F ?. Thus, s must reach two different
vertices v?j and v?l in F ?, which contradicts the fact that F ? is
deterministic. Regarding case (iii), there must exist a vertex
v†i in F † and a vertex v in F that are both reached by s
and that v†i and v have different outputs. But according to
the construction of F †, v†i must share the same output as v.
Hence, F † must output simulate F .

Hence, to solve FM, we can always look for vertex covers.

B. Searching over vertex covers via variables

Now we represent a vertex cover with binary variables.
To encode a vertex cover K = {K1,K2, . . .Km} on

an input filter F = (V, {v0}, Y, τ, C, c), we introduce the
following binary variables:
• Create a binary variable Ri

v for each v ∈ V and each
i ∈ {1, 2, . . . , |V |}, and assign Ri

v = 1 if and only if v
is contained in Ki. If i > |K|, then we view Ki as an
empty set and set Ri

v = 0 for all v ∈ V .
• Create a binary variable qi for each i ∈ {1, 2, . . . , |V |},

and assign qi = 1 if and only if Ki is not empty.
We also define additional variables with constant values

assigned from the structure of the input filter:
• Introduce a binary variable tyv for each v ∈ V and
y ∈ Y , to which we assign value 1 if and only if v
has non-empty y-children.

• Introduce a binary variable pov for each v ∈ V and
o ∈ O, to which we assign value 1 if and only if v
has o in its outputs, i.e., o ∈ c(v).

With these variables, we can encode an output filter and the
constraints for it to be a valid solution in FM.

C. FM as an integer nonlinear program (INP)

Now, we formalize FM as an integer nonlinear pro-
gram. In what follows, we denote the input filter as F =
(V, {v0}, Y, τ, C, c), the vertex cover to be searched for
as K, and the induced output filter from K as F † =



(V †, {v†0}, Y, τ †, C, c†). For brevity, we will simply write ∀i
for ∀i ∈ {1, 2, . . . , |V |}, ∀v for ∀v ∈ V , and ∀y for ∀y ∈ Y .

Minimize ∑
1≤j≤|V |

qj (INP-Obj)

Subject to:
qi, Ri

v ∈ {0, 1} : ∀i,∀v (INP-Vars)

Ri
v ≤ qi : ∀i,∀v (INP-NESubset)

qi ≤ qi−1 : ∀i (INP-Sym)∑
1≤j≤|V |

Rj
v0 ≥ 1 (INP-ValidCover)

∑
1≤j≤|V |

∏
v∈V

(2−Ri
v − tyv +Rj

vy ) ≥ 1 : ∀i, ∀y (INP-Zip)∑
o∈C

∏
v∈V

(1−Ri
v + pov) ≥ 1 : ∀i (INP-Out)

The objective (INP-Obj) is to minimize the number of
non-empty subsets in K. For each j, variable qj receives
value 1 if at least one vertex of F is assigned to Kj . This is
expressed by constraints (INP-NESubset). We use the idea of
Méndez-Díaz and Paula [20] to reduce symmetry by pushing
the non-empty subsets to smaller indices. This is imposed by
constraints (INP-Sym).

Constraint (INP-ValidCover) requires that the initial state
of F be contained in at least one subset of the vertex cover.
Together with constraints (INP-Zip), this ensures that all
vertices of F that are reachable from the initial state will be
covered by K. For the output filter to be deterministic, for
each observation y and each state v†i in F †, v†i must have
at most a single y-child. Accordingly, for each subset Ki,
there must exist a subset Kj that contains all the y-children
of Ki. More exactly, ∀i ∈ {1, 2, . . . , |V |}, ∀y ∈ Y :

∃j ∈ {1, 2, . . . , |V |}, s.t., ∀v ∈ V,
(
(Ri

vt
y
v = 1) =⇒ (Rj

vy = 1)
)

︸ ︷︷ ︸
all y-children of Ki are contained in Kj

.

In algebraically simplified form, this is the zipped con-
straints (INP-Zip). Note that we allow multiple such Kj’s
to exist for any Ki and y, but in the output filter, only one
will be (arbitrarily) picked for the transition.

In addition, the output for vertex v†i should be the common
output of all vertices in the subset Ki. This means that for
each subset Ki, all states within that subset must share a
common output. Formally, ∀i ∈ {1, 2, . . . , |V |},

∃o ∈ C, s.t., ∀v ∈ V,
(
(Ri

v = 1) =⇒ (pov = 1)
)

︸ ︷︷ ︸
all vertices in Ki must share output o

,

which is expressed by constraints (INP-Out).
With a solution to the integer nonlinear program in hand,

we first form the vertex cover K by constructing the subsets
according to the values assigned to variables Ri

v’s. Then we
make the output filter F † by following Definition 5.

The next we prove the correctness of INP.

Lemma 3 (correctness). Let K be the vertex cover formed
by an optimal solution to the integer nonlinear program for

an input filter F and let F † be an induced filter from K.
Filter F † is an optimal solution to FM with input F .

Proof sketch. The nonlinear programming constraints for-
malize the requirement for the induced F † to be deterministic
and output simulate filter F . The objective function ensures
the minimum number of states. Both do this exactly, which
we show by establishing the equivalence between the non-
linear constraints and properties of determinism and output
simulating in FM. This holds in both directions.
⇐= : If constraints (INP-ValidCover) and (INP-Zip)

hold, then K is a zipped vertex cover, F † constructed
following Definition 5 is deterministic, and L(F ) ⊆ L(F †)
as per Lemma 1. If constraint (INP-Out) is satisfied, then
∀s ∈ L(F ), C(F, s) ⊇ C(F †, s). Hence, F † is deterministic
and output simulates F .

=⇒ : Given an F † that is an optimal solution for FM,
construct an induced zipped cover K following Lemma 2.
The values of the variables encoding this cover must satisfy
constraints (INP-NESubset) and (INP-ValidCover). If F †

is deterministic, then constraints (INP-Zip) must also be
satisfied. The fact that F † output simulates F implies that
constraints (INP-Out) are satisfied.

Proof that if F † is minimal, then the value of (INP-Obj)
must be optimal (and vice versa) follows similarly.

IV. INTEGER LINEAR PROGRAMMING AND SAT
In this section, we introduce three additional formulations

of FM: (i) an integer linear programming formulation, (ii)
a Boolean satisfaction formulation, and (iii) a Boolean
satisfaction with zipped constraints being added just-in-time.

A. Integer linear programming (ILP) with linear constraints
This section presents an integer linear program by lineariz-

ing the nonlinear constraints (INP-Zip) and (INP-Out).
To linearize constraints (INP-Zip), we introduce a binary

variable ai,jy for each i, j ∈ {1, 2, . . . , |V |} and v ∈ V to
determine whether there is a transition from vertex v†i to
vertex v†j under label y in the output filter F †. If ai,jy = 1,
then the value of term

∏
v∈V (1−Ri

v + 1− tyv +Rj
vy ) must

be a positive integer. Otherwise, we choose not to build such
a transition in the output filter, regardless of the value of the
corresponding term. Mathematically, we have:

ai,j
y +Ri

v + tyv −Rj
vy ≤ 2 : ∀i,∀j, ∀v,∀y. (ILP-Zip-1)

Then constraints (INP-Zip) are written as∑
1≤j≤|V |

ai,j
y ≥ 1 : ∀i,∀y. (ILP-Zip-2)

For constraints (INP-Out), we similarly introduce a binary
variable bio, with value 1 to denote the fact that the term∏

v∈V (1−Ri
v + p

o
v) has a positive value. If bio = 0, then we

do not care whether the value of the corresponding term is
positive or not. Thus, we add the following constraints:

1− bio + 1−Ri
v + pov ≥ 1 : ∀i,∀o, ∀v. (ILP-Out-1)

Then constraints (INP-Out) are linearized as follows:∑
o∈C

bio ≥ 1 : ∀i. (ILP-Out-2)



B. Boolean satisfaction (SAT)

We next treat FM as a sequence of k-FM problems by
enumerating the bound on the output filter size. Each k-FM
is formalized as a Boolean satisfaction problem, which we
call SAT [k]. To find the minimal filter, the idea is to solve a
SAT [k], and then decrement k until no smaller output filter
can be found.

To obtain a SAT [k] instance, we first remove variables
qi (∀i) and constraints (INP-NESubset) and (INP-Sym)
since we do not need (INP-Obj) and only want to find
an output filter with size bounded by k. Next, we treat
binary variables Ri

v , ai,jy , bio as boolean-valued and write
constraints (ILP-Zip-1)–(ILP-Out-2) in conjunctive normal
form (CNF).

Given a filter minimization problem with size bounded
by k, constraint (INP-ValidCover) is written as a clause:∨

i∈{1,2,...,k}

Ri
v0 . (SAT-ValidCover)

Constraints (ILP-Zip-1) and (ILP-Zip-2) are written as:

ai,j
y ∨Ri

v ∨ tyv ∨Rj
vy : ∀i,∀j, ∀v,∀y (SAT-Zip-1)∨

j∈{1,2,...,k}

ai,j
y : ∀i,∀y. (SAT-Zip-2)

And constraints (ILP-Out-1) and (ILP-Out-2) become:

bio ∨Ri
v ∨ pov : ∀i,∀o, ∀v, (SAT-Out-1)∨

o∈C

bio : ∀i. (SAT-Out-2)

Notice that consecutive SAT instances share most of their
variables and constraints. The SAT [k] instance is equivalent
to the SAT [k+1] one but with additional unit clauses Rk+1

v

for all v ∈ V . Instead of making each SAT [k] instance from
scratch and solving it, we add unit clauses while decreasing
k. This allows the solver to re-use knowledge acquired from
previous SAT instances, and leads to an incremental anytime
procedure in Algorithm 1. First, we initialize k to be |V (F )|
(line 1). Next, we construct a CNF formula SAT [k] (line 2)
and invoke the SAT solver (line 3–6). If an assignment is
found for SAT [k] within the time budget (line 7), then we
set its cover choice to be the smallest one found so far
(line 8), update the time budget by the amount of time used
in this iteration (line 9), add the unit clauses (line 10), and
decrease k (line 11). Otherwise, if the SAT [k] has not been
solved within the time budget, then we use the minimum
cover found so far to construct the minimal filter (line 14).
When given an adequate time budget, the algorithm will find
the minimal filter. And running the algorithm for a longer
duration increases the chance of finding a smaller filter.

C. SAT with just-in-time constraints: LazySAT

In SAT, zipped constraints (SAT-Zip-1) and (SAT-Zip-2)
are critical to ensure deterministic transitions between sub-
sets of K. If a set of vertices in the input filter do not
share any common output, then there is no need to check
these zipped constraints on any set containing these vertices.

Algorithm 1: SAT(F, timeout)
1 k ← |V (F )|
2 CNF← BuildFormula(F, k)
3 Initialize minimum vertex cover Kmin to be empty
4 solver ← SATSolver(CNF)
5 while k ≥ 1 and timeout > 0 do
6 result← solver. solve(timeout)
7 if result.solved then
8 Kmin ← result.model
9 Reduce timeout by the time used

10 Add unit clauses Rk
v (∀v ∈ V ) to solver

11 k ← k − 1
12 else
13 break
14 F ′ ← FilterConstruction(F,Kmin)
15 return F ′

In this case, we say that the zipped constraints related
to these vertices are inactive. The existence of inactive
constraints slows down the resolution of the SAT problem,
but detecting and representing all active zipped constraints
in FM requires exponential time and space [15]. To speed up
the SAT approach without significant overhead, we introduce
LazySAT, a just-in-time treatment of the zipped constraints.
In LazySAT, we first partition these constraints into non-
overlapping sets of clauses, solve the SAT problem without
these constraints, and introduce each set of clauses only when
a non-zipped cover is returned and it violates these clauses.

Zipped constraints ensure that K covers F as well
as being zipped. To treat them lazily, we update con-
straints (SAT-ValidCover) so that every state in F is con-
tained in at least a subset:∧

v∈V

( ∨
i∈{1,2,...,k}

Ri
v

)
. (LazySAT-ValidCover)

Next, we partition the clauses in the zipped constraints. Let
the set of clauses from constraint (SAT-Zip-1) be A. Then
A can be partitioned into non-overlapping subsets according
to the vertex v and outgoing label y, i.e., A = ∪v∈V ∪y Av

y .
Each subset Av

y consists of the following clauses:∧
i∈{1,2,...,k}

∧
j∈{1,2,...,k}

(
ai,jy ∨Ri

v ∨ t
y
v ∨Rj

vy

)
.

Similarly, the set of clauses from constraint (SAT-Zip-2) is
denoted as B, which is parameterized by the outgoing label
y. Each subset By consists of the following clauses:∧

i∈{1,2,...,k}

( ∨
j∈{1,2,...,k}

ai,jy

)
.

We detect the violation of these clauses, and add the
clauses to the solver as needed. Let Yc be the set of outgoing
labels y such that the clauses in By are already present in
the solver, and P be the set of vertex v and outgoing label
y pairs such that Av

y are also added to the solver. Both Y
and P are initialized as empty sets. Given a vertex cover K
returned from the SAT algorithm, if K is not zipped, then
there must exist a set of states K ∈ K and a label y such
that all y-children of vertices in K are not contained in any
single subset in the cover K. This must be a consequence of



violating some missing clauses parameterized by K and y in
the zipped constraints. We add these clauses as follows: (i)
if y 6∈ Yc, add y to Yc and add clauses in By to the solver;
(ii) for any v ∈ K, if (v, y) 6∈ P , add (v, y) to P and add
clauses in Av

y to the solver. Now, repeatedly call the solver,
adding clauses if needed, until we find a zipped vertex cover
with size no greater than k. To find a minimum solution,
follow the same procedure as Algorithm 1.

V. EXPERIMENTAL RESULTS

We implemented INP, ILP, SAT and LazySAT in Python,
based on mixed integer nonlinear solver SCIP [21], mixed
integer linear solver Gurobi [22], and SAT solver CaDi-
CaL [23]. All executions are conducted on an OSX laptop
with a 2.4GHz Intel Core i5 processor, and each algorithm is
given 10min budget to solve a filter minimization problem.

First, we minimize the filter in Figure 1b. INP failed to
give a result before timing out, while ILP, SAT and LazySAT
give minimal filters with 5 states within 1 s, 2 s and 100 s,
respectively. One such minimal filter is shown in Figure 1c.
We collected no further results for INP since it appears to
be incapable of minimizing filters with more than 10 states
within 10min.

To test the performance of the remaining three algorithms,
we randomly generated a filter as follows: (i) construct a
tree with a root node at layer 0 and w nodes at each of d
additional layers, and then connect each vertex from a parent
vertex in an earlier layer by drawing a directed edge; (ii) ran-
domly pick m vertices to add self loops; (iii) randomly pick
n vertices to connect to some parent vertex in a later layer,
so as to generate cycles. Next we randomly assign no outputs
to vertices in the filter, where each vertex is assigned with p
of them. Similarly, we randomly assign ny observations to
the edges in the filter while keeping the filter deterministic.

To compare ILP and SAT-based approaches, we start with
a filter structure randomly generated by parameters d=4,
w=3, m=n=2, p=2 and no=5. For any given number of
observations ny , we sample 10 filters, and collect the time
to minimize these filters for each algorithm in Figure 2a. As
more observations are added to the filter, fewer states share
common observations. The zipped constraints (ILP-Zip-1)
and (SAT-Zip-1) will be simplified, since ai,jy connects with
fewer vertices. Hence, the computational time for both ILP
and SAT-based approaches tend to decrease. Fixing the
number of observations to be ny = 5, we also collect
the computation time under varying outputs in Figure 2b.
This gives an opposite trend as increasing the number of
outputs makes the problem harder from two aspects: (i) the
number of variables increases; (ii) the number of output
constraints (ILP-Out-1) or (SAT-Out-1) increases owing to
both an increasing number of outputs and an increasing
number of vertices with pov = 0 for each output o. Across
both studies, SAT-based approaches outperform integer lin-
ear programming. We speculate that this is because the
constraints for FM are fundamentally combinatorial in nature
and can be concisely encoded in CNF. These CNF constraints
can be exploited relatively efficiently (e.g., by building a
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Fig. 2: Comparison of logarithmic computational time to minimize
filters with different number of outputs and observations.

Fig. 3: The number of constraints used by SAT and LazySAT to
find the sub-optimal solutions while increasing the running time.
The input filter is constructed with parameters d = 20, w = 5,
m = n = 10, p = 1, with 50 observations and 5 outputs.

constraint-dependency graph). And a final factor might be
that the objective function really takes a limited range of
values and its values can be enumerated efficiently.

Observe that in Figure 2b, as we increase the number of
outputs, LazySAT significantly outperforms SAT since few
states share common outputs, so most zipped constraints are
inactive and can be removed. We further tested them on
a larger filter instance, where many states share common
outputs and hence a significant proportion of constraints
become active. In Figure 3, instead of presenting the time
to find a minimal solution, we report the number of clauses
used by the solver, and size of the sub-optimal solutions
found by the two algorithms along the way. LazySAT is still
able to find sub-optimal solutions faster than SAT, and the
number of clauses used by LazySAT is much fewer than
those in SAT. Treating constraints lazily does incur overhead
in detecting and adding the active clauses, but the speedup
from just-in-time treatment is seen to outweigh its overhead
even when a large number of vertices share common outputs.

VI. CONCLUSION

This paper accelerates filter minimization through con-
straints. It introduces a concise constraint description, en-
codes it in different forms, and reports empirical evidence
suggesting that constraints in conjunctive normal form are
most efficient. It also proposes a just-in-time treatment of
constraints to speed up iterative filter reduction. Future work
might consider non-deterministic input, as well as searching
for non-deterministic minimizers.
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