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Abstract—We consider a scenario in which a process of interest,
evolving within an environment occupied by several agents, is
well-described probablistically via a Markov model. The agents
each have local views and observe only some limited partial
aspects of the world, but their overall task is to fuse their data to
construct an integrated, global portrayal. The problem, however,
is that their communications are unreliable: network links may
fail, packets can be dropped, and generally the network might
be partitioned for protracted periods. The fundamental problem
then becomes one of consistency as agents in different parts
of the network gain new information from their observations
but can only share this with those with whom they are able to
communicate. As the communication network changes, different
views may be at odds; the challenge is to reconcile these
differences. The issue is that correlations must be accounted for,
lest some sensor data be double counted, inducing overconfidence
or bias.

As a means to address these problems, a new recursive
consensus filter for distributed state estimation on Hidden
Markov Models (HMMs) is presented. It is shown to be well-
suited to multi-agent settings and associated applications since
the algorithm is scalable, robust to network failure, capable of
handling non-Gaussian transition and observation models, and
is, therefore, quite general. Crucially, no global knowledge of
the communication network is ever assumed. We have dubbed
the algorithm a Hybrid method because two existing pieces are
used in concert: the first, Iterative Conservative Fusion (ICF) is
used to reach consensus over potentially correlated priors, while
consensus over likelihoods, the second, is handled using weights
based on a Metropolis Hastings Markov Chain (MHMC). To
attain a detailed understanding of the theoretical upper limit
for estimator performance modulo imperfect communication, we
introduce an idealized distributed estimator. It is shown that
under certain general conditions, the proposed Hybrid method
converges exponentially to the ideal distributed estimator, despite
the latter being purely conceptual and unrealizable in practice.
An extensive evaluation of the Hybrid method, through a series
of simulated experiments, shows that its performance surpasses
competing algorithms.

I. INTRODUCTION

Mobile and robotic-sensor networks have many valuable ap-
plications and the problem of estimation within such networks
has, consequently, been a topic of extensive study in recent
years [1], [2], [3]. In a robotic-sensor network, robots carry
sensors that make noisy observations of the state of an system
of interest. Many tasks require that the agents construct some
overall portrayal of the system’s state. This requires that the
agents fuse their individual information, ideally in some way
that forms a cohesive whole. More precisely, we have to devise
methods to estimate the state of the system based on collective
information of the agents.
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The estimation process is said to be centralized if all the
agents send their raw observations to a central node that is
responsible for calculating an estimate based on the collective
information [4]. But this is not always possible owing to link
failures as well as bandwidth and energy constraints [5]; nor is
it always desirable because doing so also introduces a single
point of failure.

The alternative —termed distributed state estimation (DSE)—
is to adopt a message passing protocol between agents and
strive to achieve the same result as the centralized estimation
via a distributed process. In order to be viable, if messages are
to contain raw information, the fundamental challenge is to
identify and account for mutual information before passing a
message from one agent to another. To better understand this
notice that a node’s knowledge of the process being estimated
is based on its own observations and also those of the nodes
with whom it has communicated in the past. Because, in real
problems, network connectivity may change over time, even two
nodes who are exchanging messages with each other for the first
time, may both already have incorporated the observations of
a common third node, perhaps with whom each communicated
individually only in the distant past. Fusion for those two nodes
is now a delicate matter as their information is correlated;
overconfidence would result if the shared provenance of their
estimates is not accounted for properly.

Most DSE research in recent years has focused on approaches
that rely on consensus methods. The objective then becomes
to design both a protocol for message passing between nodes
and local fusion rules so that the nodes reach a consensus
over their collective information. Although DSE algorithms
are not guaranteed to match the performance of the centralized
estimator all the time, their scalability, modularity, and robust-
ness to network failure have fueled interest in the approach.
These features are important in the applications envisioned
for robots employing such algorithms, such as multi-agent
localization [6].

Consistent with this recent line of work, the present paper
studies a new algorithm for estimation of Hidden Markov
Models over an unreliable network, which we dub the Hybrid
method. The algorithm’s primary feature is that it achieves
attractive performance, in terms of estimate quality, across a
wide range of network behavior.

The value and innovation of the Hybrid method is perhaps
most easily understood by contrasting it with existing ap-
proaches visually. Figure 1 shows different estimation methods
and illustrates how the proposed Hybrid method compares.
The horizontal axis in the diagram is the probability of link
failure: p = 0 means that two agents that try to establish a
communication link will always succeed and p = 1 means they
will always fail. The vertical axis represents a performance
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Fig. 1: A graphical synopsis of the paper’s contribution. Though
a centralized method (in green) yields estimates of highest
possible quality, it can only operate when the network remains
fully connected for all time. In contrast, Iterative Conservative
Fusion (a constant time recursive approach, depicted in red) is
practicable with intermittent connectivity, but its conservative
nature means that information is diluted, degrading estimation
performance. The method studied herein (shown in blue) is a
hybrid of both, realizing the “best of both worlds” in that it
achieves excellent performance across a wide range of network
conditions, including recovering centralized performance in the
connected regime.

measure, yet to be defined, that quantifies the similarity of
the estimated PMF (Probability Mass Function) to the PMF
of an omniscient estimator with access to all observations
made by nodes independent from network topology. When
the network is connected, this is equivalent to the centralized
estimator. However, there is a threshold p0 (which may in
general depend on the network topology) beyond which the
centralized estimator cannot operate. Once that threshold
has been crossed, the network will likely have more than
one connected component and such components will change
over time. This is the area where the proposed method has
unmistakable superiority over competitors. The threshold p0
may be small for simple network topologies, resulting in
a large area that corresponds to connections of intermittent
connectivity.

In the event of intermittent network disconnection, estimator
performance inevitably falls below the omniscient estimator.
Even if no memory and computational limit is imposed and
nodes are allowed to keep the full history of their observations
and share such a history with other path connected nodes on
the network, there is always an upper bound on the proximity
measure. We show that our method’s performance approaches
the upper bound, resulting in a large performance improvement
compared with Iterative Conservative Fusion, an au courant
method capable of tolerating erratic communications.

A. The Structure of this Article

The remainder of the paper is organized as follows. The
very next section gives the broad outlines of prior work on
distributed state estimation and serves to help familiarize the
reader who has come to these problems only lately; it also

draws connections, both similarities and points of departure,
from the closest existent work. Then, in Section III, the notation
used in this paper is explained. That section also identifies
the assumptions and describes the system model. Section IV
gives some preliminaries on distributed state estimation, paving
the way for the presentation of the new Hybrid method. The
method itself is presented in Section V and, finally, we evaluate
its performance in Section VI.

II. RELATED WORK

A. Common Modeling Assumptions: A Panoramic View

Categorizing Distributed State Estimation (DSE) algorithms
on the basis of the modeling assumptions they make gives a
useful miniature taxonomy of the methods. Any DSE method
makes assumptions about one or more of the following aspects:
the state (static [7] vs. dynamic [6]), the state transition
model (linear [8] vs. nonlinear [9], [10], [11]), type of noise
(Gaussian [7], [8] vs. non-Gaussian [12]), topology of the
network (constant vs. changing [13], [7]), connectivity of the
network (persistent [9] vs. intermittent [13], [7]), the agents’
knowledge of the network topology (global vs. local [13],
[7], [9]) and, finally, the treatment of mutual information
between estimates (exact solution through bookkeeping [1]
vs. conservative solutions that avoid double counting [14],
[15]).

The research on DSE for linear systems with Gaussian
noise is extensive (see [8] and [16] for reviews). For nonlinear
systems with Gaussian noise, the distributed versions of
Extended Kalman Filters (EKF) [17], [9], Extended Information
Filters (EIF) [18] and Unscented Kalman Filter (UKF) [19]
have been proposed. For nonlinear systems with non-Gaussian
noise, different variants of Distributed Particle Filter (DPF)
methods have also been studied [20].

B. Bookkeeping versus Conservative Fusion

The Channel Filter [1], a classic DSE method, presupposes
a directed communication network topology and relies on
bookkeeping to make sure no information is double counted
during message passing. The Channel Filter can recover
the performance of the centralized estimator fully so long
as the network is entirely connected and time invariant.
A similar bookkeeping-based approach, which relaxes the
directed communication graph requirement, was proposed by
Bahr, Walter and Leonard [21]. Their method keeps track of
the provenance of individual measurements to avoid double
counting. The final estimates produced are conservative and
consistent approximations of the centralized approach and
their method outperforms other conservative fusion DSE
approaches that do not perform bookkeeping. However, the
basic problem with DSE methods that rely on bookkeeping is
their inability to scale. The information being maintained is
inherently combinatorial in nature, so they are unsuitable for
large-scale networks and their resource requirements (usually
for CPU or memory, but possibly communication as well) can
be prohibitive even in networks of moderate size.

For dynamic state systems within time-varying networks,
the connectivity constraint is a determining factor for choosing
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the proper DSE method. If the network remains connected,
DSE methods can maintain equality of each node’s priors and
then keep the likelihoods identical by performing consensus
on the likelihoods [22], [23]. We refer to this approach as
Consensus on Likelihoods (CL). The advantage of CL is that,
given sufficient time to reach consensus, it can match the
centralized estimator’s performance. However, if the network
becomes disconnected, or if the consensus steps are limited,
the priors start to depart from one another. Once the priors
differ across nodes, CL methods will fail.

In the case of disparities between priors owing to network
disconnection, the prevailing fix is an approach where the agents
perform Iterative Conservative Fusion (ICF) on node posteri-
ors [24], [14], [15]. Such ICF methods have a conservative
fusion rule that avoids double counting at the expense of down
weighting the uncorrelated information. As a consequence
they are inherently sub-optimal. In the case of disparities
between priors owing to early termination of a consensus
process, [9] and [17] proposed to use a combination of CL and
ICF. To justify their method they refer to the complementary
features of CL and ICF. They claim that ICF underweights
the new information and showed better performance when
very few consensus iterations have been executed. On the
other hand, CL takes longer to converge but can recover
the centralized estimator’s performance. Therefore, when the
number of consensus iterations are limited, they proposed that
the combination would gain the benefits of both.

C. Distributed Calculation of Network Cardinality

For the CL methods to recover the Centralized Estimator’s
performance fully, they need knowledge of the total number
of sensor nodes in the network. This is required because the
distributed averaging approach used in CL methods provides
the average value of the collective information and, crucially,
the sum of the information equals the average value multiplied
by the number of nodes.

Fortunately, several distributed methods already exist for
computing the cardinality of a network. For example [25]
uses the statistical properties of the Bernoulli trials and max
consensus to estimate the network cardinality. A review of
the prominent methods for distributed node counting can be
found in [26] along with a distributed method suitable for
dynamic networks. In [27], the authors use randomly generated
identifiers (IDs) and propose an algorithm that can estimate
the network cardinality with minimal communication cost.

D. Situating this Article’s Contribution

Above, the precedence of [9] and [17] in their amalga-
mation of CL and ICF has been recognized and is openly
acknowledged—the present authors were working on the
method described herein in order to realize an efficient approach
that can cope with conditions of severe network degradation.
We encountered their work only after our first publication on
the subject [13]. It is worth clarifying the difference between
the method in this paper and that of [9] so that, from an
application point of view, one should know when to opt for
which. At their core both methods follow the same fusion rules

for independent and correlated sources of information. This
paper describes fusion rules for the discrete case, while [9]
details the implementation for continuous linear and non-linear
systems with a uni-modal assumption on posterior probability
distributions. Save for the typical reasons to prefer a continuous
over a discrete representation (i.e., compactness and accuracy),
one uses the discrete realization specially when either the (near)
Gaussian or uni-modal assumptions no longer hold. Robotics
problems violating these assumptions are, of course, known to
be abundant.

In essence, our assumptions about the network’s behavior
differs and the analysis and final results are, consequently,
distinct from [9], [17]. (In detail: Proposition 1 gives the quality
of network needed to achieve some desired performance—a
question that is not meaningful when the network is assumed as
in [9] and [17].) Our viewpoint is that network disconnection
will inevitably result in unequal priors and using ICF alone
will mean that much of the new information, despite being
uncorrelated, will be diluted in the consensus process. Handling
priors with ICF and new information with CL gives outstanding
performance in settings where the communication network is
unreliable—so good in fact as to eclipse previously envisioned
domains of applicability.

In this paper we analyze the Hybrid method to quantify the
relationship between network connectivity and the performance
gap with respect to an ideal (yet impractical) distributed estima-
tor. From [9], a complementary aspect is known, namely that
the Hybrid method requires few consensus steps to still remain
stable under perpetual connectivity. Thus, using our results,
the practitioner who has control over the network topology
can compare two competing design solutions: balancing the
effort to keep the network connected against the loss of some
performance with intermittent connectivity. The core proof of
this paper, supplementing the discussion in our earlier work
[13], helps form a deeper understanding of [9], [17]. One now
sees that a hybrid of CL and ICF yields superior performance in
networks with either perpetual or intermittent connectivity, for
systems where the posteriors are either discrete or continuous
and uni-modal, and the motion/observation models are either
linear or non-linear. Finally, we point out that the discussion
in [9] about the choice of consensus weights when the number
of agents in the network is unknown may be applied mutatis
mutandis to our method as well.

This article is an improved and extended version of the
conference paper [28], where the method of [13] was gen-
eralized to finite-state systems with non-Gaussian noise. In
extending [28] this article has added a mathematical analysis
and proof for superiority of the proposed method over ICF.
We also show, through systematic examination and extensive
simulations, that the performance improvement is significant
in situations with any of these traits: large number of agents,
significant observation uncertainty, dynamic state systems with
several states, and in time-varying networks that face intermit-
tent disconnection. The method handles non-Gaussian noise
models, being particularly useful for collaborative tracking and
localization. Taken together this supports the claim that the
method should be the first choice in many applications.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4

III. NOTATION AND MODEL

A. The Network Topology

Assume that we have n homogeneous agents associated
with the nodes of a graph. These agents can communicate with
one another under a time-varying undirected network topology
Gk = 〈V, Ek〉 where V and Ek are, respectively, the set of graph
nodes and edges at step k. The node corresponding to the ith

agent is denoted by vi. If agents i and j can communicate
directly at step k then (vi, vj) ∈ Ek. The set N i represents
the neighbors of node vi that are connected by an edge to
vi. The set Ni,k = N i,k ∪ {vi} will also be used in some of
the equations. The set CCik represents the set of agents that
are path-connected to agent i at step k (the mnemonic being
Connected Component).

For a time-varying network, there exist connected component
sets (or, more briefly, components) that persist over time.
By this we mean that the subset of nodes comprising the
component remains constant, though the internal topology of
the graph within the component may vary. A component can be
uniquely identified by its members, the time of its formation,
and its lifetime, i.e., the duration that the set of nodes remains
unchanged. Then, at time step k, a network NETk can be
represented by a set of components paired with their formation
times:

NETk = (CC1
k, tCC1

k
), . . . , (CCMk , tCCMk

), M ≤ |V|. (1)

Agent i is said to be part of a component CCjk if vi ∈ CCjk,
where the j is used to denote an entry from the pairs in NETk,
this being an extrinsic view. We will also find it convenient
to talk of agent i being part of component CCjk, again simply
meaning vi ∈ CCjk. This latter notation refers to the same
component (as agent i is only in one component at time k)
but it emphasizes a component associated with an individual
node, in this particular case, stating that agent i is connected
(via some path) to agent j.

The set Tcc = {t0, t1, . . . } contains the timestamps in which
a change occurs in the composition of NETk. Additionally, let
tc,k = tk+1 − tk denote the duration for which all network
components comprising NETk persist. Note that the lifetime of
a single component in NETk can be greater than tc,k if it was
formed before tk or if it continues to exist beyond tk+1.

For an arbitrary set with members b = {bi1 , · · · , bis},
the index set Ib = {i1, · · · , is} contains the indices of b’s
members (and s ∈ N). We will use the abbreviated form
In = {1, 2, · · · , n}, and Ik = {1, 2, · · · , k} to index the
agents and time steps, respectively.

B. System Model

Consider a finite state HMM specified as follows:
• The HMM has ns possible states X = {S1, · · · , Sns}

and also, there are nz possible observation symbols
Z = {O1, · · · , Onz}.

• The random variables xk ∈ X and zik ∈ Z represent the
state at step k and the observation made by agent i at
step k, respectively.

• The transition model is an ns × ns matrix written
Pk|k−1 , p(xk|xk−1). All the agents possess this model.

• Each agent has an observation model, which is an ns ×
nz matrix written as p(zik|xk), i ∈ In. The observation
models of different agents may differ.

• The prior, prediction, and posterior probabilities are 1×ns
random vectors

πk−1 , p
(
xk−1|{zik}

i∈In
k∈Ik−1

)
,

π̃k , p
(
xk|{zik}

i∈In
k∈Ik−1

,xk−1

)
,

πk , p
(
xk|{zik}

i∈In
k∈Ik

)
,

respectively.
The above HMM is a well-defined and useful description

for many distributed estimation applications including ones
with dynamic state and time-varying observation models. For
example, the following transition and observation models can
be represented in the above form:

xk+1 = f(xk+1,wk) wk ∼ p(vk), (2)

zik+1 = hi(xk+1,vk) vk ∼ p(vk), (3)

in which, wk and vk are random variables representing
dynamics and observation noise.

Further, we assume that each agent has a processor and a
sensor on-board. Sensors make observations every ∆t seconds
and the processors and the network can handle calculations
based on message passing among agents every δt seconds. We
assume that δt� ∆t. We also assume that the agents exchange
their information over a communication channel that is free of
both delay and error. Communication links are assumed to be
symmetric.

The specification above can be extended to include control
inputs but they are omitted as they are not the focus of this
paper.

Henceforward {zik}
i∈In
k∈Ik is the indexed family of all the

observations made by all the agents up to step k. For each agent
i, the variable Rij

k denotes the information that node i receives
from node j, its neighbor at time k (i.e., j ∈ N i,k). The set Ri

k

contains all the information that node i has received from its
neighbors up to step k and Iik = Ri

k ∪ {zik} represents all the
information content that is available to agent i at time k. (In
general, in this paper, the information in the variable that bears
the superscript i is a version local to the ith agent. Moreover,
symbol η with or without any sub/superscript is a normalization
constant.)

IV. DISTRIBUTED STATE ESTIMATION

In this section we will review some concepts in Distributed
State Estimation that help us better understand the details
of the method developed in the next section. We first define
Recursive State Estimation in the context of HMMs. Then,
we discuss what is meant by Centralized Estimation in the
context of networked systems, as this notion has been used only
informally up till now. We proceed to define a method, within
the Consensus on Likelihoods (CL) class, called Distributed
Consensus Based Filtering that is particular to systems where
agents have identical prior information. Given that network
disconnection and early stopping of the consensus process
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yields priors among the agents that are not identical, we review
Conservative Fusion and its iterative version as a remedy for
such cases.

In the context of HMMs, Recursive State Estimation is
the process of recursively computing the posterior probability
of a random dynamic process xk conditioned on a sequence
of measurements {zik}

i∈In
k∈Ik . Bayesian recursive filtering, in a

process with the Markov assumption, has the form

p(xk|zk) =
1

η
p(zk|xk)p(xk|zk−1,xk−1) (4)

=
1

η

n∏
i=1

p(zik|xk)

∫
p(xk|xk−1)p(xk−1|zk−1)dxk−1,

where zk = {zik}i∈In . Recursive estimation in a sensor
network setting for an HMM can be carried out in the following
ways:

A. Centralized Estimation

Centralized Estimation (CE) involves a single distinguished
node in the network that receives observations zInk , {zik}i∈In
from the rest. The above Bayesian filtering recursion for step k
of a finite state HMM consists of first calculating the prediction
π̃k according to

π̃k = πk−1Pk|k−1, (5)

then updating via

πk =
1

η
π̃kOk, (6)

where Ok is an ns × ns diagonal matrix of likelihoods,
p(zInk |xk).
Remark 1. Under CE, for a connected component set CC
containing nc nodes, the state Probability Mass Function (PMF)
at step k and the initial PMF π0 are related by

CEπk =
1

π0T
CE
1:k1N

π0T
CE
1:k, (7)

where
T CE
1:k = P1|0O1 · · · Pk|k−1Ok. (8)

B. Consensus on Likelihoods

Consensus on Likelihoods (CL) is based on the following in-
sight. In (4), if all agents share the same prior information, they
will recover the centralized estimator’s performance provided
they can reach consensus over the product of measurement
probabilities. Distributed averaging methods can be applied
here as the nodes need to reach a consensus over the log of
the joint measurement likelihoods (log-likelihood), that is,

l̃k =
1

n
log

n∏
i=1

Oik =
1

n

n∑
i=1

logOik =
1

n

n∑
i=1

l̃ik, (9)

in which Oik is the ith agent’s likelihood. Once consensus has
been achieved, the updated estimate is

πk =
1

η

prediction︷ ︸︸ ︷
πk−1︸ ︷︷ ︸

prior

Pk|k−1 enl̃k︸︷︷︸
likelihood

. (10)

Coming to some consensus over likelihoods can be achieved
for the discrete state variables using a distributed averag-
ing method based on Metropolis-Hastings Markov Chains
(MHMC). To avoid confusion we will use m to indicate
consensus iterations throughout this paper. On a communication
graph G〈V, E〉 one can use a message passing protocol of the
form

ψi(m+ 1) =
∑|Ni|
j=1γij(m)ψj , (11)

such that
∑
j

γij(m) = 1,∀i and ψi(0) = l̃ik,

to calculate the average of the values. On the graph nodes in
which di(m) = |N i| is the degree of the node vi, one sets

γij(m) =


1

1+max{di(m),dj(m)} if (i, j) ∈ E ,
1−

∑
(i,n)∈E

γin if i = j,

0 otherwise.

(12)

With this message passing protocol

lim
m→∞

ψi(m) = l̃k.

Note that for each node i, the γijs only depend on the degrees
of its neighboring nodes. As stated earlier, once consensus has
been reached over likelihoods, the centralized estimate will
be recovered. A prerequisite for this method to work is that
the network remains connected, a requirement which is too
restrictive for many applications.
Remark 2. For a connected component set CC containing nc
nodes the CL method’s likelihood after consensus is equivalent
to the likelihood of collective information of the nodes in CC.
Introducing the concise notation

O{ω1:nc}k
k =

nc∏
j=1

[
Ojk]ωj,k , (13)

in which ωj,k is the converged value for the power of Ojk in
the consensus variable, we see that, if the consensus process
converges,

O
{ncωCL

1:nc
}
k

k = O
{nc 1

nc
}
k

k = Ok. (14)

Even if the topology of the network changes, as long as the
nodes that comprise CC remain unchanged, the state PMF at
step k and the initial PMF π0 are related by

CLπk =
1

π0T
CL
1:k1N

π0T
CL
1:k, (15)

where

T CL
1:k = P1|0O

{ncωCL
1:nc
}
1

1 · · · Pk|k−1O
{ncωCL

1:nc
}
k

k . (16)

The expression in (14) guarantees that after convergence, from
the same initial condition, the posterior of CL is equal to CE
and

T CE
1:k = T CL

1:k = P1|0O1 · · · Pk|k−1Ok. (17)

The formal requirement for the above expression to hold is
that the consensus process converges with a network dependent
rate σCC and, for δt and ∆t defined as before, σCCδt� ∆t.
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Success of this method is contingent upon the node pri-
ors being equal. Next, we discuss the conventional method
employed for cases with node priors that may be unequal.

C. Iterative Conservative Filtering
Iterative Conservative Filtering (ICF) is an approach where,

instead of putting effort into ascertaining the dependencies
between agents’ information, a fusion rule is designed to
guarantee that no double counting of mutual information can
occur. This usually results in the replacement of independent
information with some form of approximation that is con-
servative. Such a treatment dilutes the information available
from observations, resulting in performance that is inferior to
distributed filters which do not suffer the degradation introduced
by this approximation.

Since, in general, Conservative Approximate Distributed
Filtering relies on fusion rules that combine conservative
approximation of local PMFs, we need to clarify what consti-
tutes a conservative approximation for a PMF. Mechanisms of
conservative fusion follow conveniently therefrom.

Conservative approximation of a PMF is only possible
under certain conditions. Bailey, Julier, and Agamennoni [29]
introduced a set of sufficient conditions for a PMF, p̃(x), to
satisfy in order to be deemed a conservative approximation of
a second PMF, p(x). The conditions are:

(P1) The property of non-decreasing entropy:

H(p(x)) ≤ H(p̃(x));

(P2) The order preservation property:

p(xi) ≤ p(xj) iff p̃(xi) ≤ p̃(xj), ∀xi,xj ∈ X .

Then Conservative Fusion (CF) of two PMFs can be
achieved for two probability distribution functions pa(x|Ia)
and pb(x|Ib), with the Geometric Mean Density Rule (GMD):

pc(x) =
1

ηc
pa(x|Ia)ωpb(x|Ib)1−ω

=
1

ηc
pa(x|Ia \ Ib)ωpb(x|Ib \ Ib)1−ωpa(x|Ia ∩ Ib),

(18)

in which, 0 ≤ ω ≤ 1. Ib and Ib represent two sources of
information. Note that in the above equation the PMFs are
raised to the power of ω and multiplied together element-wise.
This rule never double counts mutual information, replacing
independent components with a conservative approximation.
The interesting property of this fusion rule is that it works
without the knowledge of the dependence of the two initial
PMFs. This rule can also be generalized to more than two PMFs.
For example, in the context of this paper, node i calculates
a conservative approximation of the centralized estimate and
stores it in πi. The GMD fusion of these estimates, denoted
by π̄k is also a conservative approximation of the centralized
estimate, πk.

π̄k =
1

η

n∏
i=1

(πik)
ωi
, such that

∑n
i=1 ωi = 1. (19)

Note that for the vector πik, the expression (πik)
ωi implies

an element-wise calculation where elements of the vector are
raised to the power of ωi.

Remark 3. Several criteria have been proposed to choose the
ωi. One such criterion is [30]:

π̄ = arg min
π

max
i
{D(π‖πi)}, (20)

where the D(π‖πi) is the Kullback-Leibler divergence between
π and πi.
Remark 4. It has been shown in [29] that raising a PMF to
some power of ω ≤ 1 reduces its entropy. From (19) it can
be seen that applying the GMD rule reduces the entropy of
the likelihood probabilities that are independent. In general,
doing so is undesirable and the likelihood probabilities can be
treated separately to avoid this.

Iterative CF (ICF) is achieved as follows. At the first iteration
of consensus, m = 0, for each agent j, take the current local
estimate πjk−1 and calculate the prediction π̃jk. Initialize the
local consensus variable to be

φj(0) =
1

ηi
π̃jkO

j
k.

Let ω = {ωj}j∈INi(m) and find ω∗ such that

ω∗ = arg min
ω
J
(1

η

∏
j∈N i(m)

[
φj(m)

]ωj)
,

and
∑

j∈N i(m)

ωj = 1 and ωj ≥ 0, ∀j,
(21)

where η is the normalization constant and J (·) is an optimiza-
tion objective function. Specifically it can be entropy H(·) or
the criterion in (20). The φis are then updated locally for the
next consensus iteration with

φi(m+ 1) =
1

η∗

∏
j∈N i(m)

[
φj(m)

]ω∗j . (22)

It is straightforward to show that after repeating this process,
for all j ∈ CCik, the local variables φj(m) converge to a
unique φ∗. Moreover, φ∗ is a convex combination of the initial
consensus variables of all the agents in the set CCik, that is,
for all j ∈ I CC

i
k
, where I CC

i
k

is the index set of CCik as defined
in notation section,

lim
m→∞

φi(m) = φ∗ =
1

η

∏
j∈I

CCi
k

[
φj(0)

]ω∗j (23)

=
1

η

∏
j∈I

CCi
k

[
πjk−1Pk|k−1O

j
k

]ω∗j . (24)

To repeat the process iteratively, set πjk+1 = φ∗,∀j ∈ I CC
i
k

and
repeat the whole process for step k + 1.
Remark 5. For a connected component CC containing nc nodes,
once the consensus process has converged, we can write the
one step estimate update as

ICFπk = τ
(

ICFπk−1
)

=
1

η

nc∏
j=1

[
ICFπk−1Pk|k−1Ojk

]ωj,k . (25)

The expression relating initial PMF and state PMF at step k,
unlike previous methods, is a nested expression

ICFπk = τk
(
π0
)

= τ
(
τ
(
· · · τ

(
π0
)
· · ·
))
. (26)
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This shows that under general conditions, even with the same
initial PMF, the ICF method will not generate the same estimate
over time as CE or CL will. The only exception is the trivial
case of a fully disconnected network where, of course, all
methods become equivalent.
Remark 6. In ICF the nodes’ priors are allowed to be different.
For the CC described in the previous remark, it only takes one
consensus process for all the nodes to have the same prior and
to be able to update their state using (25). For a connected set
an alternative can be considered: one can use ICF on the priors
and, once consensus has been reached, use CL to update the
state PMF. This is equivalent to first calculating

ICFπ̄0 =
1

η

nc∏
j=1

[
ICFπj0

]ωj,0
, (27)

and then using (15) and (16) with π0 = ICFπ̄0. It is striking
that one benefit is that we recover the posterior of CE.

In the previous remark we illustrated how mixing ICF and
CL could be beneficial for a connected set of nodes with priors
that differ. This is the first indication of the potential for some
hybrid between ICF and CL that would be especially useful
for networks with intermittent connections, where connected
components change over time and it is necessary to handle
unequal priors repeatedly. The next section describes such
a method. Under the connectivity constraints just mentioned
(intermittent communication with connected components that
churn) we are able to show that when the lifetime of the
connected components in the network is long enough, one can
asymptotically recover CE’s performance.

V. HYBRID ICF AND CL

We propose a hybrid approach that uses ICF to reach
consensus over priors and the CL for distributed averaging
of local information updates. This is presented in detail as
pseudo-code in Algorithm 1 where it is given the designation
‘Hybrid method.’

Explanation of the method is aided by having a concrete
setting. Imagine a scenario consisting of n agents observing
parts of a system at time k and estimating the Markov chain’s
state xk collectively by communicating with one another over a
network which has a time-varying topology. Initially the agents
start with priors {πi0}i∈In . At step k the chain transitions to
the new state xk and the agents calculate their own local
prediction {π̃ik}i∈In (line 1 in the algorithm). They then
make observations {zik}i∈In , and compute the local likelihood
matrices {Oik}i∈In (line 1 in the algorithm).

In the rest of the algorithm, the ICF approach is used to
reach consensus over the priors using (21) recursively. The CL
approach is used to reach consensus over the new information
available to agent i from other agents that it is path-connected
to, i.e.,

∑
j∈I

CCi
k

l̃ik. In line 12 of the algorithm, |CCik| is the

number of agents that form a connected component with agent i,
and can be determined by assigning unique IDs to the agents
and passing these IDs along with the consensus variables. Each
agent keeps track of the unique IDs it receives, passing them
to its neighbors.

Input : πik−1
1 Collect local observation zik and calculate Oik and l̃ik
2 Initialize consensus variables:

φi(0) = πik, ψi(0) = l̃ik

3 m = 0
4 while not converged do
5 BROADCAST[ψi(m), φi(m)]
6 RECEIVE[ψj(m), φj(m)] ∀j ∈ N i

7 Collect received data

Ci(m) = {φj∈N
i

(m)}, Mi(m) = {ψj∈N
i

(m)}.

8 Do one iteration of ICF on consensus variables for
local prior information Cim:

φi(m+ 1) = ICF
[
Ci(m)

]
.

9 Do one iteration of MHMC on consensus variables
for new information:

ψi(m+ 1) = MHMC
[
Mi(m)

]
.

10 m← m+ 1
11 end
12 Calculate posteriors according to:

πik = φi(m)Pk|k−1e|CCik|ψ
i(m).

Algorithm 1: The Hybrid method

A. Performance Analysis

To understand the performance of the Hybrid method, we
introduce an estimator variant that, though impractical in itself,
serves as a useful benchmark for comparison. We use it to
conduct an analysis of the comparative performance of the ICF
and Hybrid methods.

As was illustrated in Figure 1, beyond a certain point,
degradation of the network connectivity causes a catastrophic
failure of a centralized estimator. This poses a dilemma if one
wishes to analyze the performance of an estimator by comparing
its efficiency to an ideal estimator. Comparing against the
centralized estimator can hardly be deemed to be meaningful
when it must be granted the ability to fuse observations that
are inaccessible to a decentralized estimator (e.g., owing to
observations being on the opposite side of a network partition).
Doing so causes performance measures to be skewed by the
unavailability of data rather than the actual estimation process
itself.

This motivates consideration of an estimator with perfor-
mance that is more realistic. As will become apparent shortly,
a Full History Sharing Estimator (FHS) (see next paragraph)
incorporates all the information possible while respecting
network topology constraints and, thus, constitutes the proper
upper limit for estimator performance.

Full History Sharing Estimator (FHS): Under FHS, at
each step k, every agent i has access to the full history of
observations of all the agents that it is path connected to at
the current step. Then FHSπk is obtained by going back to the

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8

initial step, k = 0, and updating the state PMF sequentially.
The update at each step uses all the available observations
drawn from the full history. Obviously such calculations quickly
become infeasible, but we ignore the computational complexity
and only use FHSπk to establish a reference performance.
Note that under FHS, even though the whole PMF history
is recalculated at each step, the comparison between FHSπk and
alternative estimates only involves the PMF at the current point
in time.

For our theoretical analysis, we focus on periods of time
where the connected components in the network remain
unchanged. Note that this assumption allows for change in
the network topology so long as it does not result in any
change in the connected component sets CCk. We also make
the assumption that consensus processes, of any type, run for
enough time to converge for every estimation step.

With these assumptions, the expression relating FHSπk+1 and
the initial PMF, π0, is

FHSπk+1 =
1

π0T
FHS
1:k1N

π0T
FHS
1:k , (28)

where
T FHS
1:k = P1|0O1 · · · Pk|k−1Ok. (29)

Lemma V.1. Consider the Distributed State Estimation prob-
lem of a HMM with a time-varying network topology Gk =
〈V, Ek〉 as described in Section III. At time k0 let CCm be
the mth connected component containing |CCm| = nm nodes.
Further assume that CCm remains unchanged for the next k
steps. Then, during the time k0 ≤ t ≤ k0 + k, and for all the
nodes in CCm, the Hybrid method converges at a geometric
rate to the FHS estimator, when the following conditions are
satisfied:
• The consensus process converges with a network depen-

dent rate σCCm . For δt, the consensus update rate, and
∆t, the time interval between consecutive observations,
we have σCCmδt� ∆t.

• The resultant matrix product of the pairs H(t) ,
Pt|t−1Ot is an allowable non-negative matrix, i.e., each
row and column of H(t) has at least one positive element.

• For a fixed t0 ≥ k0, all the elements of the product chains
of both estimators are strictly positive, i.e. T FHS

k0:t0
> 0 and

T HYB
k0:t0

> 0.
• For a fixed γ, independent of t,

min
i,j

+hi,j(t)

max
i,j

hi,j(t)
≥ γ > 0, (30)

where, hi,j(t) is the (i, j) element of H(t) , Pt|t−1Ot,
and min+ is the minimum over the positive elements.

Proof. We have already established the main part of the
proof by showing that, if the consensus process converges,
the inhomogeneous chain of matrix products in (17) and
(29) for a connected component are identical. Full history
sharing among agents results in a common prior for CCm

as FHSπCCm,k0 . Under the Hybrid method the agents perform
conservative fusion of their priors which converges to a unique

prior denoted HYBπCCm,k0 . The priors for the two estimators
are not the same in general. However, from the moment of
connection onwards, as long as CCm remains unchanged,
the inhomogeneous chain of matrix products that results in
posterior estimates is equivalent for both methods as shown
by (17) and (29), specifically

T ∗k0:k , T FHS
k0:k = T HYB

k0:k.

Hence, based on Theorem 3.3 of [31], for which the last
three conditions given are required, T ∗k0:k converges to a rank 1
matrix, which consequently renders the initial priors FHSπCCm,k0 ,
and HYBπCCm,k0 irrelevant. Therefore the posterior of both
estimators converge to the same stationary distribution of T ∗k0:k
and, furthermore, they do so at a geometric rate.

Remark 7. The convergence of T ∗k0:k to a rank 1 matrix is
termed weak ergodicity [31], [32]. Moreover, one can use
the results of [33] to show that there exists some ρt0 < 1
and rt0 ≤ ∞ so that the decay of the L1 norm between the
posteriors of the two methods is bounded by∥∥∥FHSπjt0T

∗
t0:t0+n −

HYBπjt0T
∗
t0:t0+n

∥∥∥
1
≤ rt0ρnt0 .

The above expression is the basis for the next lemma. It
is also worth pointing out that the geometric nature of this
convergence will be clearly visible in the plots showing the
method’s empirical performance (presented in the following
section).

The analysis so far shows that the formation of connected
components, and their lifetime, plays an important role in
the performance of DSEs. This, in addition to the weak
ergodicity property of T ∗k0:k, provides practical insight for
system designers. One can link the lifetime of a component to
L1 convergence of Hybrid’s PMF to FHS’s estimates. Also, one
might establish some other performance measure for estimate
quality and wish to know the requirements on tc,k needed
to ensure that the gap between FHS and Hybrid average
performance over time is smaller than some desired tolerance.
In order to examine these design choices, we need the following
definitions.

Let C(·) be a Lipschitz continuous performance metric that
assigns a scalar to a PMF. By definition

‖C(π1)− C(π2)‖1 ≤ L‖π1 − π2‖1 (31)

where L is the Lipschitz constant.

Lemma V.2. Let CCm be a component that was formed at
time t0 and persists for n steps. Let T ∗t0:t0+n represent the
inhomogeneous chain of matrix products that describe the FHS
and Hybrid methods for this period. Suppose that FHS and
Hybrid priors at time t0 are FHSπjt0 and HYBπjt0 , respectively.
For any desired convergence, specified via ε1 such that∥∥∥FHSπjt0T

∗
t0:t0+n −

HYBπjt0T
∗
t0:t0+n

∥∥∥
1
≤ ε1. (32)

CCm should persist for at least n = Nε1 steps where

Nε1 = (logρt0 ε1 − logρt0 rt0) (33)

and ρt0 and rt0 are constants defined in Remark 7.
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The lemma is easily proved by taking the logarithm from
both sides of inequality (32) and using Remark 7.

Proposition 1. Consider the behavior of agent j over period
of time T , and its connected components for that duration
CCjt0 , CCjt1 , . . . CCjtm . Let the average performance measure of
agents j for FHS and Hybrid methods be FHSJj and HYBJj ,
respectively. For a given ε1 that satisfies (32) and for a desired
ε2 > Lε1 gap between the average performance of FHS and
Hybrid so that ∥∥FHSJj − HYBJj

∥∥
1
≤ ε2, (34)

the components CCjt , t ∈ {t0, t1, . . . , tm} should persist at
least Nε2 steps, where

Nε2 =
LNε1(2− ε1)

(ε2 − Lε1)
(35)

in which Nε1 is calculated based on (33) and L is the Lipschitz
constant for function C(·)

Proof. By definition, FHSJj and HYBJj are

FHSJj ,
1

T

t0+T∑
t=t0

C(FHSπjt ),
HYBJj ,

1

T

t0+T∑
t=t0

C(HYBπjt ). (36)

Then we have∥∥FHSJj − HYBJj
∥∥
1

=
1

T

∥∥∥∥∥
t0+T∑
t=t0

C(FHSπjt )− C(HYBπjt )

∥∥∥∥∥
1

(37)

≤ 1

T

t0+T∑
t=t0

∥∥∥C(FHSπjt )− C(HYBπjt )
∥∥∥
1

(38)

≤ L

T

t0+T∑
t=t0

∥∥∥FHSπjt − HYBπjt

∥∥∥
1
. (39)

Now consider that during the time period from tk to tk+1 the
jth agent belongs to a connected component whose members
are fixed. Then, from Lemma V.1, for some ρtk < 1 and some
rtk <∞, we have∥∥∥FHSπjtkT

∗
tk:tk+n

− HYBπjtkT
∗
tk:tk+n

∥∥∥
1
≤ rtkρntk , (40)

for all n ≤ tk+1 − tk.
For the given ε1 > 0, consider all connected components

that agent j belongs to in time interval [t0, t0 + T ] and take
Nε1 = max

k
(logρtk

ε1 − logρtk
rtk). Then, for all n ≥ Nε1 :∥∥∥FHSπjtkT

∗
tk:tk+n

− HYBπjtkT
∗
tk:tk+n

∥∥∥
1
≤ ε1. (41)

Next we denote the duration that the component is connected
with tc,k = tk+1− tk and we introduce a constant that bounds
the estimation operation. Let

Nε1
tc,k
≤ δ =⇒ (tk+1 − tk)δ ≥ Nε1 (42)

for all connected periods k and all agents. Then we have

t0+T∑
t=t0

∥∥∥FHSπjt − HYBπjt

∥∥∥
1

=
∑
k

tk+1∑
t=tk

∥∥∥FHSπjt − HYBπjt

∥∥∥
1
. (43)

Which can be further expanded into

tk+1∑
t=tk

∥∥∥FHSπjt − HYBπjt

∥∥∥
1

=

tk+Nε1∑
t=tk

‖FHSπjt − HYBπjt ‖1

+

tk+1∑
t=tk+Nε1+1

‖FHSπjt − HYBπjt ‖1

≤ 2Nε1 + (tc,k −Nε1)ε1. (44)

The constant appears in the first term of the last expression
because the L1 norm of two probability distributions can never
exceed 2.

Then using (42) and (44),

1

T

t0+T∑
t=t0

∥∥∥FHSπjt − HYBπjt

∥∥∥
1
≤ 1

T

∑
k

(2tc,kδ + tc,k(1− δ)ε1)

=
1

T

∑
k

tc,k(2δ + (1− δ)ε1)

= (2δ + (1− δ)ε1)
1

T

∑
k

tc,k

= 2δ + (1− δ)ε1. (45)

Thus,
‖FHSJj − FHSJj‖1 ≤ L(2δ + (1− δ)ε1). (46)

Substituting δ from inequality (42) and using (34) one arrives
at Nε2 as calculated in (35).

VI. EXPERIMENTS

We conduct an analysis of the comparative performance
of our method in two ways. First, we examine two case
studies (Sections VI-A and VI-B) which, though abstract, are
representative of robotic-sensor network applications. Secondly,
we carried out experiments where we isolated and controlled
various parameters, examining the effect they have on the
average performance.
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Fig. 2: A schematic of the model used in case study in
Section VI-A. The Markov Model has 21 states and is observed
by five agents over an unreliable network.
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Fig. 3: Performance comparison of the Hybrid method (designated HYB) and ICF on the Markov Model in Figure 2. The green
shaded areas mark the lifetime of components and agents with the same shade belong to the same component. Non-shaded
areas signify time intervals where the agents are completely isolated from the rest of the network.

Fig. 4: The grid based map of the environment for the tracking
example VI-B. The dark cells are obstacles; blue circles are
trackers and the red circle is the ground truth location of the
maneuvering target; the green circle depicts an observation
made by an agent.

A. Convergence properties in a generic Markov Chain

In the first case study we consider a system consisting of
five agents connected to each other through a time-varying
network. Agents make observations of the state of a HMM
with 21 states. The transition model of the HMM is shown
in Figure 2, with transition probabilities represented by color
coded arrows. The plots in Figure 3 show the performance of
the Hybrid and ICF methods compared to FHS for 55 steps,
as connected components form and change. The horizontal
axis shows the progression of time; the vertical axis is the
difference between estimated PMF and FHS (measured with
L1 norm). The convergence behavior discussed in Remark 7 is
directly visible in the Hybrid method and, for this system of
moderate size, in most cases convergence takes three steps after
the formation of a component. Note also how components with
more agents experience faster convergence. One particularly
salient instance in Figure 3 is the rapid convergence after step
forty-four where the network becomes fully connected.

In contrast, ICF’s performance is erratic during connected
times possessing exponential convergence only for agents that
are disconnected from the rest of the network. This phenomenon
can be explained using (26), where we established that, under
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Fig. 5: Estimation performance for the tracking case study (see Figure 4 for the environment and details of the scenario). For
each agent its distribution at a single step is shown at the top and is indexed accordingly at its representative time. Non-shaded
areas signify time intervals where agents are completely isolated from the rest of the network.

general conditions, for connected components, T FHS
tk:tk+n

6=
T ICF
tk:tk+n

except for the trivial case of a component with single
agent. The exponential convergence of ICF for agent 2 in
t ∈ [11, 24] is one such case. The convergence in this period
is due to the forgetting factor of the HMM.

B. A Tracking Example
Our second case study is concerned with a decentralized

target pose estimation problem on a grid using multiple
observers connected through a changing network topology.
Figure 4 depicts the 2D grid in which a target performs a
random walk while six observers are trying to estimate its
position. Each white cell is modeled as a single state of our
HMM representing the position of the target on the grid. The
observers’ motion is a deterministic back-and-forth patrolling
route; four of them are rooks moving along the borders and
the other two are bishops moving diagonally on the grid. In
order to detect the target, each observer emits a straight beam
perpendicular to its direction of motion as shown in the figure.
The beam either hits the target or an obstacle. In the first case,

the observer senses the position of the target based on a discrete
one dimensional Gaussian distribution over the states that the
beam has traversed; otherwise, under the assumption of no false
positives, the observer produces a “no target” symbol. (The
model has an additional state, which is incorporated into the
observation model by setting zero probabilities in the likelihood
matrix for those states that beam has traveled through to hit a
wall.)

For every Markov transition, each observer carries out its
decentralized estimation step for the position of the target,
which is shared with other connected observers through the
communication network. The network topology varies randomly
resulting in the formation of different connected components.
However, we assume all communications occur at a higher rate
than Markov transition steps, allowing the connected nodes to
reach consensus over the shared information.

We evaluate the performance of the Hybrid method during
the phase where the agents become disconnected from each
other, and are then reconnected after some interval. Similar
to the previous case, for purposes of comparison, each agent
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(a) Average performance for chessboard tracking example
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(b) Average performance for system with three states and twenty
observers

Fig. 6: Performance comparison between the Hybrid method and ICF. The horizontal axis is the probability of link failure,
moving from left to right shows the network changing from ideal, through fragmentation, to complete failure. The vertical axis
is a metric of estimator performance computed as follows: at each time, for every agent, the total variation distance of the
estimator’s PMF and the output from a hypothetical, omniscient centralized estimator (as if it were operating on a perfect
network) is computed. The mean of this is taken over agents and over all times, and then normalized between 0 and 1, where 1
coincides with the fully connected network and 0 the fully disconnected one.

performs three estimation processes. In one instance it uses
our Hybrid method to fuse its prior along with the received
priors. In the second instance it uses the ICF method to fuse
its posterior along with the received posteriors, and the third
instance is the FHS method, to give a baseline for comparison.
Again, L1 norm difference is used to make the comparison.

Figure 5 compares the performance of the Hybrid and ICF
methods, showing that the proposed method outperforms ICF
and is able to recover performance very close to FHS solution
after reconnection. Using the same visual presentation as before,
the shaded areas mark the lifetime of components and agents
with the same shade color belong to the same component. Based
on the L1 distance, both decentralized estimates converge to
FHS during the interval of network partition. This is expected,
since observers do not have access to each others information
and hence, due to the forgetting property of the system, all
three estimators become indistinguishable—each separate agent
independently performing its own Bayesian update. However,
while the Hybrid method is able to start to recover immediately
after reconnection, ICF continues with degraded performance
even after reconnection. This latter fact is because it ignores
the correlations.

C. Focused Performance Evaluation
Next we study the robustness of our method more system-

atically with respect to network failure. This permits some

reflection on the factors that affect the gap between the average
performance of our Hybrid method and FHS. The experiments
reported in this subsection were performed as follows.

We take the HMM and construct a path connected commu-
nication network that is a ring lattice with degree four. This is
the base network topology. We then assign a probability of link
failure p to all the links in the communication graph and run
FHS, HYB, and ICF methods for 50 steps. At each step we
randomly disconnect links in the base graph, with probability p
and perform the consensus processes on the resulting graph. For
πjk, the local estimate of agent j at time k, and π∗k, the estimate
from the omniscient estimator, we compute the instantaneous
performance score as

1− 1

2

∥∥∥πjk − π∗k∥∥∥
1
, (47)

which ensures that scores are within the [0, 1] interval, where
1 connotes the best performance and 0 the worst. We tally the
results for each DSE variant. Since even in a fully disconnected
network, agents have access to their own observations, the
lowest score is seldom zero. To account for the specific effects
of network degradation (rather than observability of the HMM
itself), we then re-normalize the results to [0, 1] interval. In the
end, we plot the average normalized performance vs. probability
of link failure. The diagram that results gives insight into the
robustness of the DSE method with respect to network failure
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Fig. 7: Box plots of the L1 error of the HYB and ICF methods with respect to FHS. Each box summarizes a distribution
representing error over time and averaged over nodes in the network.

and gives a clear visualization of the gap between FHS and
other methods.

Diagrams, as just explained, were constructed for the
distributed tracking example in VI-B and another system
consisting of 20 agents observing a randomly generated HMM
with three states. The results can be seen in Figures 6a and 6b
respectively. Some observations of interest can be made.

Figure 6a shows that ptr, the threshold on probability of link
failure beyond which centralized estimation is not possible, is
small (ptr = 0.12) for the target tracking example. Comparing
Figure 6a to Figure 6b, the performance gap between ICF and
HYB is smaller, the gap between ICF and FHS is narrower
too, and the decline in performance is sharper. This can be
explained by the large number of states in the HMM of the
tracking example (559 states) along with the fact that there are
only six observers that track the maneuvering target. The result
in Figure 6a suggests that the benefit of using Hybrid method
over ICF is less pronounced for systems with less accurate
observation models, or on time-varying networks consisting of
many small-sized, short-lived connected components.

Figure 6b illustrates a case where there are more observers,
n = 20, and the improvement over ICF is marked and the gap
between HYB and FHS is negligible. Unlike the tracking
problem in Figure 6a, the gap between ICF and HYB is
substantial even for values 0 � p. That is because for large
connected networks even if some links fail, the size of the
connected components and their lifetime is much longer than
those in smaller networks. This is a property of network
reliability and its mathematical foundations are well-studied but
beyond the scope of this paper. For our purposes it suffices to
say that based on the example in Fig 6b, on reliable networks,

the advantage of using Hybrid over ICF is clear. The results in
Figure 6b also show that if the ratio of observers to states is
large, Hybrid method performance approaches FHS even for
when the probability of link failure is substantial.

Taking both examples in this section together, adopting
the Hybrid method over ICF is always beneficial. Also, the
improvement over ICF and the degree to which the gap with
FHS is closed depends on the intrinsic properties of the HMM
and underlying network.

D. Error and Communication Cost

Two additional experiments involving extensive simulations
were conducted to test the comparative performance of the
Hybrid method across different network sizes, across a range
of HMM sizes (in terms of number of states), and along a
spectrum of link failure probabilities. In the first experiment we
fixed the probability of link failure to a single value (p = 0.6)
and compared the performance of HYB with ICF over a
combination of HMM and network sizes. For the second
experiment, the number of states in the HMM was fixed
to 10 and we measured the maximum number of consensus
steps as the number of nodes in the network and link failure
probabilities were varied. The first experiment aims to provide
insight into the scalability of the Hybrid method, while the
second experiment reports the communication cost of the
method. We tried our best, in both experiments, to evaluate
using random models for the network topology and the HMM
that are germane to performance in realistic settings. However,
some care is needed—the degree to which the quantities shown
are representative will depend on the application of interest
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Fig. 8: The maximum number of consensus steps, each taking δt time, to reach consensus. The number of nodes and probability
of link failure affects the topology, which influences the time to reach consensus.

and the communication graph underlying the system. While
the numbers are only meaningful for applications with settings
very similar to ours, one factor that is clearly common to
all the experiments is that the Hybrid method’s performance
eclipses ICF in terms of L1 error. This is further evidence for
the claims established above via theoretical arguments when
the assumptions of our method hold.

1) Scalability: In the first experiment, we contrast the
distribution of the L1 error of both the HYB and ICF methods
with respect to FHS, across a range of network sizes while also
varying the model’s size (in terms of number of states). We used
the generic HMM and random network model of Sections VI-A
and VI-C. The parameters were set as follows: we form a grid
by changing the number of observers (nodes of the random
graph) from 50 to 600 with a stride size of 50, and the number
of states of the underlying HMM from 10 to 900 with a stride
of 100. Every point on the grid represents a pair of network
nodes and HMM dimension. Then, for each pair, we simulate
the estimation based on HYB, ICF, and FHS methods over 50
steps. When all the simulations have completed, we calculate
the L1 error of HYB and ICF with respect to FHS for all the
nodes in the network for each time step. Taking an average of
the L1 error over the nodes produces a single number for that
time step. The sequence of these average numbers over time
can be seen as a distribution. This distribution is depicted as a
box and whisker plot for each point of the grid in Figure 7.

It is clear from Figure 7 that, while the ICF method may incur
large errors, the errors of the Hybrid method are negligible
being almost zero for the whole grid. This testifies to the
superiority of HYB over ICF.

Another observation is that the average error and its variance
grows with the increase in the number of HMM states for a
fixed network size. This can be explained by the fact that, as
the number of states grow, the number of variables contributing
to the error calculation also increases. A similar trend may
be seen with a variance that shrinks as we move along the
network size axis for a fixed HMM size. This is due to the fact
that the number of nodes appears in the denominator when
the average is computed, causing the variance to decrease with
increasing network size.

2) Communication Cost: In this experiment we fixed the
size of a random HMM to 10 states and considered different

networks. For each network size with a given probability of
link failure we ran the simulation for 50 steps, recording the
maximum number of consensus iterations (or δt steps) across
all nodes for each time-step of the simulation. This forms a
measure of communication cost. Note that some nodes may
converge faster than others and precisely how this occurs will
depend on the network topology—the rate of convergence
in a connected component is a function of the diameter of
the underlying communication graph. This is quite apart from
other factors, like the system model and quality of observations
which do also influence the behavior of the consensus process.

We used Cauchy’s convergence test with a threshold of
10−4 to determine when convergence had occurred. Similar
to the previous experiment, we obtain a distribution for each
grid point. The results are plotted in Figure 8 wherein we
show the distribution of the maximum number of consensus
iterations. As expected, for lower probabilities of link failure,
fewer consensus steps are needed as the network has smaller
graph diameter, it having connected components with more
nodes. In contrast, when probability of link failure approaches
1, the components are minuscule and it takes few steps for the
consensus process to converge. There is an interval over which
the probability of having components with large graph diameter
increases and this explains the increased consensus steps during
such intervals. The jump in the number of consensus steps
is much more pronounced for networks of larger size. This
experiment shows that the favorable performance of the Hybrid
method, illustrated in the previous experiment, is achieved in
a reasonable number of consensus steps.

VII. CONCLUSION AND FUTURE WORK

This paper has proposed a distributed state estimator for
discrete-state dynamic systems with non-Gaussian noise in
networks with changing topology and those that do not remain
connected all the time. The method is able to achieve robustness
and recover performance after an interval of disconnection.
Separating the process of consensus for the correlated and
uncorrelated information was the key to achieving better
performance compared to ICF alone. The theoretical analysis
guarantees that the method proposed in this paper has desirable
convergence properties and outperforms the competitors. In
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many cases, this is by a significant margin. Evaluating the
proposed method in a series of experiments showed consider-
able performance improvement compared to the state of the art
in practice. The experiments also validated the mathematical
analysis, showing exponential convergence under L1 very
clearly.

For future work, it would be interesting to examine the
effect that topology of the network has on the performance
and the gaps between ICF, HYB, and FHS. Another direction
is to investigate a mixture of raw information sharing in small
sub-groups of agents and conducting consensus on sub-groups.
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[30] J. Ajgl and M. Šimandl, “Design of a robust fusion of probability densities,”
in Proceeedings of IEEE American Control Conference (ACC), 2015, pp.
4204–4209.

[31] E. Seneta, Non-negative matrices and Markov chains. Springer Science &
Business Media, 2006.

[32] B. D. Anderson, “Forgetting properties for hidden markov models,” in
Proceedings of US/Australia Joint Workshop on Defence Applications of
Signal Processing. Amsterdam: Elsevier, 2001, pp. 26–39.

[33] C. Liverani, B. Saussol, and S. Vaienti, “A probabilistic approach to
intermittency,” Ergodic theory and dynamical systems, vol. 19, no. 3, pp.
671–685, 1999.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


